Metre (unit): Difference between revisions
imported>John R. Brews (massive reorganization to avoid repetition and consolidate) |
imported>John R. Brews (→History: source) |
||
Line 65: | Line 65: | ||
</ref> These uncertainties in determining the frequency of the specific 1960 standard source, coupled with limitations in use of its particular wavelength, led in 1983 (along with other considerations spelled out in the final decision) to the switch to the frequency-independent standard based upon the transit time of light. This switch freed the definition of the metre from restriction to any specific source, allowing the source to be selected to suit the requirements of the measurement at hand. Perhaps the main benefit of the change in definition was to define the metre in a manner that did not require further revision as light sources and measurement methodology advanced. | </ref> These uncertainties in determining the frequency of the specific 1960 standard source, coupled with limitations in use of its particular wavelength, led in 1983 (along with other considerations spelled out in the final decision) to the switch to the frequency-independent standard based upon the transit time of light. This switch freed the definition of the metre from restriction to any specific source, allowing the source to be selected to suit the requirements of the measurement at hand. Perhaps the main benefit of the change in definition was to define the metre in a manner that did not require further revision as light sources and measurement methodology advanced.<ref name=comb> | ||
For example, see {{cite web |title=Optical frequency comb: The measurement of optical frequencies |url=http://www.nrc-cnrc.gc.ca/eng/projects/inms/optical-comb.html |year=2009 |publisher=[[National Research Council of Canada]] |accessdate=2011-04-03}} A more technical discussion is found in {{cite book |title=Metrologia e costanti fondamentali; Volume 166 of Proceedings of the International School of Physics "Enrico Fermi" |chapter=Frequency comb applications and optical frequency standards |author=Th. Udem and F. Riehle |pages=pp. 317 ''ff'' |url=http://books.google.com/books?id=37HD1iIxlH0C&pg=PA317 |editor=TW Hänsch, ''et al.'', eds. |isbn=1586037846 |year=2007 |publisher=IOS Press}} | |||
</ref> | |||
Although time-of-transit measurements are used today, for example in practical methods like [[GPS]], precision measurements of intermediate lengths commonly are determined in wavelengths ''λ'' of a standard source and converted to metres using the relation ''λ= {{nowrap|c<sub>0</sub> / f '',}} where ''c<sub>0</sub>'' = {{nowrap|299 792 458m/s}} is the defined speed of light in [[classical vacuum]] and ''f'' is the frequency of the source. One consequence of the relation ''λ= {{nowrap|c<sub>0</sub> / f ''}} is that measurement errors in finding the source frequency are mirrored in the source wavelength, and for any specific choice of source they share the same ''relative standard uncertainty''.<ref name=Quinn> | Although time-of-transit measurements are used today, for example in practical methods like [[GPS]], precision measurements of intermediate lengths commonly are determined in wavelengths ''λ'' of a standard source and converted to metres using the relation ''λ= {{nowrap|c<sub>0</sub> / f '',}} where ''c<sub>0</sub>'' = {{nowrap|299 792 458m/s}} is the defined speed of light in [[classical vacuum]] and ''f'' is the frequency of the source. One consequence of the relation ''λ= {{nowrap|c<sub>0</sub> / f ''}} is that measurement errors in finding the source frequency are mirrored in the source wavelength, and for any specific choice of source they share the same ''relative standard uncertainty''.<ref name=Quinn> |
Revision as of 13:25, 11 April 2011
The metre (American meter) is the basic unit of length measurement in the International System of Units (SI) commonly known as the metric system. The metre is abbreviated as m, appearing after the quantity. The metre has been adopted as the fundamental unit of length in almost all countries of the world, with the United States being a notable exception.
Currently, the SI units define the metre in terms of the speed of light and the second, such that the metre is the length traveled by light in the reference medium of classical vacuum in the time interval of 1/299 792 458 second.[1][2]
An easily realized and reproducible measurement is a major goal of metrology. The practicality of adoption of a time of flight as a measure of length depends critically upon the experimental fact that the speed of light in vacuum is a universal constant to within experimental error. Its practicality is further enhanced because corrections introduced by using real media, such as terrestrial vacuum, or even air, are very small.
The metre is also the basis of the SI units of area and volume, which are the square metre (m2) and cubic metre (m3), respectively.
History
The metre was initially adopted as a unit of measure in France in 1790, during the French Revolution.
The original definition of the metre was the length of a pendulum with a half-period of 1 second, but was changed in 1791 to be the length of a prototype bar which was supposed to be 1/10 000 000 of the length of the meridian of Paris from the north pole to the equator. Since then, the metre has been redefined a number of times.[4]
After 1960 and until 1983, lengths were measured in principle in terms of the number of wavelengths of light that could be fitted into them. The precise definition of the metre was established in the 11th CGPM of 1960 as 1 650 763.73 wavelengths of the 2p10−5d5 line of krypton-86.[5]
In 1972 KM Evenson and co-workers at the then National Bureau of Standards (NIST today) found the standard krypton line to be such an asymmetric function of frequency that several equally plausible choices for wavelengths could be determined, and they suggested measurements could be made 100 times more accurately using a methane stabilized He-Ne laser.[6] That assessment was confirmed by KM Baird and co-workers at the National Research Council of Canada.[7] These uncertainties in determining the frequency of the specific 1960 standard source, coupled with limitations in use of its particular wavelength, led in 1983 (along with other considerations spelled out in the final decision) to the switch to the frequency-independent standard based upon the transit time of light. This switch freed the definition of the metre from restriction to any specific source, allowing the source to be selected to suit the requirements of the measurement at hand. Perhaps the main benefit of the change in definition was to define the metre in a manner that did not require further revision as light sources and measurement methodology advanced.[8]
Although time-of-transit measurements are used today, for example in practical methods like GPS, precision measurements of intermediate lengths commonly are determined in wavelengths λ of a standard source and converted to metres using the relation λ= c0 / f , where c0 = 299 792 458m/s is the defined speed of light in classical vacuum and f is the frequency of the source. One consequence of the relation λ= c0 / f is that measurement errors in finding the source frequency are mirrored in the source wavelength, and for any specific choice of source they share the same relative standard uncertainty.[9] A list of standard sources and measurement uncertainties is maintained by the BIPM.[10]
The difference between today's use of the interferometer and that of the past is that the wavelength unit is converted directly to metres using λ = c0 / f, rather than by the older more error-prone intermediary of comparison with a selected standard source with a wavelength defined in metres. Comparison of sources using wavelengths introduces interferometer errors that are not introduced using a direct comparison of frequencies. An added change in today's interferometry, unrelated to the change in definition, is that today's sources are much more stable and their frequencies are better known.
Practical measurement
The question answered next is how the definition of the metre is to be implemented in practice. The most commonly used approaches are discussed first: the transit-time methods, and the interferometer methods. For objects like crystals and diffraction gratings, diffraction patterns are used. Other methods for small-dimensional measurement are only mentioned.
Transit-time measurement
As a result of the present definition of the metre, if a transit time approach is used, length measurements are not subject to knowledge of the source frequency, but are subject to the error in measuring transit times. An additional uncertainty is the refractive index correction relating the medium used to the reference vacuum, taken in SI units to be the classical vacuum. The refractive index of the medium slows the light.
Transit time measurement underlies most radio navigation systems for boats and aircraft, for example, radar and the nearly obsolete Long Range Aid to Navigation LORAN-C. For example, in one radar system, pulses of electromagnetic radiation are sent out by the vehicle (interrogating pulses) and trigger a response from a responder beacon. The time interval between the sending and the receiving of a pulse is monitored and used to determine a distance. In the global positioning system a code of ones and zeros is emitted at a known time from multiple satellites, and their times of arrival are noted at a receiver along with the time they were sent (encoded in the messages). Assuming the receiver clock can be related to the synchronized clocks on the satellites, the transit time can be found and used to provide the distance to each satellite. Receiver clock error is corrected by combining the data from four satellites.[11]
Such techniques vary in accuracy according to the distances over which they are intended for use. For example, LORAN-C is accurate to about 6km, GPS about 10m, enhanced GPS, in which a correction signal is transmitted from terrestrial stations (that is, differential GPS (DGPS)) or via satellites (that is, Wide Area Augmentation System (WAAS)) can bring accuracy to a few meters or < 1 meter, or, in specific applications, centimeters. Time-of-flight systems for robotics (for example, Light Detection and Ranging LIDAR and Laser Detection and Ranging LADAR) aim at lengths of 10-100m and have an accuracy of about 5-10 mm[12]
Interferometer measurements
In many practical circumstances, and for precision work, measurement of dimension using transit time measurements is used only as an initial indicator of length and is refined using an interferometer.[13][14] The figure shows schematically how length is determined using a Michelson interferometer: the two panels show a laser source emitting a light beam split by a beam splitter (BS) to travel two paths. The light is recombined by bouncing the two components off a pair of corner cubes (CC) that return the two components to the beam splitter again to be reassembled. The distance between the left-hand corner cube and the beam splitter is compared to that separation on the fixed leg as the left-hand spacing is adjusted to match the length of the object to be measured.[15]
In the top panel the path is such that the two beams reinforce each other after reassembly, leading to a strong light pattern (sun). The bottom panel shows a path that is made a half wavelength longer by moving the left-hand mirror a quarter wavelength further away, increasing the path difference by a half wavelength. The result is the two beams are in opposition to each other at reassembly, and the recombined light intensity drops to zero (clouds). Thus, as the spacing between the mirrors is adjusted, the observed light intensity cycles between reinforcement and cancellation as the number of wavelengths of path difference changes, and the observed intensity alternately peaks (sun) and dims (clouds). This behavior is called interference and the machine is called an interferometer. By counting fringes it is found how many wavelengths long the measured path is compared to the fixed leg.
This methodology for length determination requires a careful specification of the wavelength of the light used, and is one reason for employing a laser source. This interferometer methodology has an experimental uncertainty related to determining the precise frequency of the source.[16] The measurement also requires careful specification of the medium in which the light propagates. A refractive index correction is made to relate the medium used to the reference vacuum, taken in SI units to be the classical vacuum.
In the case of a wavelength approach using an interferometer, length measurements are subject to the uncertainty in determining source frequency and various interferometer errors. Dominant among these are light beam alignment, collimation and fractional fringe determination.[17] Measurements are made in units of wavelengths λ at a known frequency f, and related to the metre using λ = c0 / f. By using sources of several wavelengths to generate sum and difference beat frequencies, absolute distance measurements become possible. Multiple frequencies are used also to make corrections for the non-ideal properties of the medium (departures from classical vacuum), for example, by adding frequencies sensitive to the presence of water vapor.
Diffraction measurements
For small objects, different methods are used that also depend upon determining size in units of wavelengths. For instance, in the case of a crystal, atomic spacings can be determined using X-ray diffraction.[18] The present best value for the lattice parameter of silicon, denoted a, is:[19]
- a = 543.102 064(14) × 10−12 m.
Similar techniques can provide the dimensions of small structures repeated in large periodic arrays like a diffraction grating.[20]
Such measurements allow the calibration of electron microscopes, extending measurement capabilities. For non-relativistic electrons in an electron microscope, the de Broglie wavelength is:[21]
with V the electrical voltage drop traversed by the electron, me the electron mass, e the elementary charge, and h the Planck constant. This wavelength can be measured in terms of inter-atomic spacing using a crystal diffraction pattern, and related to the metre through an optical measurement of the lattice spacing on the same crystal. This process of extending calibration is called metrological traceability.[22]
Other techniques
Measuring dimensions of localized structures (as opposed to large arrays of atoms like a crystal), as in modern integrated circuits, is done using the scanning electron microscope. This instrument bounces electrons off the object to be measured in a high vacuum enclosure, and the reflected electrons are collected as a photodetector image that is interpreted by a computer. These are not transit time measurements, but are based upon comparison of Fourier transforms of images with theoretical results from computer modeling. Such elaborate methods are required because the image depends on the three-dimensional geometry of the measured feature, for example, the contour of an edge, and not just upon one- or two-dimensional properties. The underlying limitations are the beam width and the wavelength of the electron beam (determining diffraction), determined, as already discussed, by the electron beam energy.[23] The calibration of these scanning electron microscope measurements is tricky, as results depend upon the material measured and its geometry. A typical wavelength is 0.5 Å, and a typical resolution is about 4 nm.
Other small dimension techniques are the atomic force microscope, the focused ion beam and the helium ion microscope. Calibration is attempted using standard samples measured by transmission electron microscopy.[24]
Other systems of units
In some systems of units, unlike the current SI system, lengths are fundamental units (for example, wavelengths in the older SI units and bohrs in atomic units) and are not defined by times of transit. Even in such units, however, the comparison of two lengths can be made by comparing the two transit times of light along the lengths. Such time-of-flight methodology may or may not be more accurate than the determination of a length as a multiple of the fundamental length unit.
Traditional units
The foot has been defined in the United States to equal exactly 0.3048 m, though an earlier definition of the survey foot was 1200/3937 m, which is different than the current definition by about one part in 500,000. The inch, being 1/12 foot, is exactly 0.0254 m, or 2.54 cm.
The modern Chinese chǐ (市尺), or "Chinese foot", has been defined to equal exactly one-third of a meter. The Hong Kong chek (尺) is exactly 0.371475 m. The Japanese kanejaku (曲尺) was defined as 10/33 m in 1891.
The Spanish vara was fixed at about 835.9 mm in 1801; however, the vara was defined in California as 838.2 mm (33 inches), and in Texas as 846.666 mm (33 1/3 inches).
References
- ↑ Resolution 1 of the 17th meeting of the Conférence Générale des Poids et Mesures (CGPM) (1983). 1983 definition of the metre. International Bureau of Weights and Measures (BIPM). Retrieved on 2011-03-19.
- ↑ The classical vacuum as a reference medium is described in Werner S. Weiglhofer and Akhlesh Lakhtakia (2003). “§ 4.1 The classical vacuum as reference medium”, Introduction to complex mediums for optics and electromagnetics. SPIE Press, 28, 34, 65. ISBN 9780819449474. and Tom G. MacKay (2008). “Electromagnetic Fields in Linear Bianisotropic Mediums”, Emil Wolf: Progress in Optics, Volume 51. Elsevier. ISBN 9780444520388.
- ↑ A conversion table for the SI units is maintained by NIST: Ambler Thompson and Barry N Taylor (March, 2008). Length. NIST guide for the use of the international system of units; Section B.9: Factors for units listed by kind of quantity or field of science. NIST. Retrieved on 2011-04-09. Advice on rounding conversions is provided here.
- ↑ For a brief history, see Historical context of the SI. The NIST reference on constants, units and uncertainty. NIST. Retrieved on 2011-03-08.
- ↑ Resolution 6 of the 11th meeting of the CGPM (1960). 1960 definition of the metre. International Bureau of Weights and Measures (BIPM). Retrieved on 2011-03-19.
- ↑ K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson, and G. W. Day (1972). "Speed of Light from Direct Frequency and Wavelength Measurements of the Methane-Stabilized Laser". Phys Rev Lett vol 29: 1346-1349. DOI:10.1103/PhysRevLett.29.1346. Research Blogging. Some historical remarks are found in: L Hollberg et al. (2005). "Optical frequency/ wavelength references". J. Phys B: At, Mol Opt Phys vol 38: pp. S469-S495.
- ↑ K.M. Baird, D.S. Smith and W.E. Berger (1973). "Wavelength of the CH4 line at 3.39 μm". Optics Communications vol 7: pp. 107-109. DOI:10.1016/0030-4018(73)90078-3. Research Blogging.
- ↑ For example, see Optical frequency comb: The measurement of optical frequencies. National Research Council of Canada (2009). Retrieved on 2011-04-03. A more technical discussion is found in Th. Udem and F. Riehle (2007). “Frequency comb applications and optical frequency standards”, TW Hänsch, et al., eds.: Metrologia e costanti fondamentali; Volume 166 of Proceedings of the International School of Physics "Enrico Fermi". IOS Press, pp. 317 ff. ISBN 1586037846.
- ↑ For example, see TJ Quinn (2003). "Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001)". Metrologia vol 40: pp. 103-133.
- ↑ A web site listing current recommendations and uncertainties is maintained by the BIPM at Recommended values of standard frequencies. BIPM (2010-09-09). Retrieved on 2011-04-10. along with links to update documentation as updates occur.
- ↑ A brief rundown is found at Donald Clausing (2006). “Receiver clock correction”, The Aviator's Guide to Navigation, 4rth ed. McGraw-Hill Professional. ISBN 9780071477208.
- ↑ Robert B Fisher and Kurt Konolige (2008). “§22.1.4: Time-of-flight range sensors”, Bruno Siciliano, Oussama Khatib, eds.: Springer handbook of robotics. Springer, pp. 528 ff. ISBN 354023957X.
- ↑ For an overview, see for example, Walt Boyes (2008). “Interferometry and transit time methods”, Instrumentation reference book. Butterworth-Heinemann, p. 89. ISBN 0750683082.
- ↑ An example of a system combining the pulse and interferometer methods is described by Jun Ye (2004). "Absolute measurement of a long, arbitrary distance to less than an optical fringe". Optics Letters vol. 29 (No. 10): p. 1153.
- ↑ The corner cube reflects the incident light in a parallel path that is displaced from the beam incident upon the corner cube. That separation of incident and reflected beams reduces some technical difficulties introduced when the incident and reflected beams are on top of each other. For a discussion of this version of the Michelson interferometer and other types of interferometer, see Joseph Shamir (1999). “§8.7 Using corner cubes”, Optical systems and processes. SPIE Press, pp. 176 ff. ISBN 0819432261.
- ↑ An atomic transition is affected by disturbances, such as collisions with other atoms, leading to a range of frequencies for the transition referred to as a linewidth. Corresponding to the uncertainty in frequency is an uncertainty in wavelength. In contrast, the speed of light in ideal vacuum is not dependent upon frequency at all.
- ↑ A discussion of interferometer errors is found in Miao Zhu, John L Hall (1997). “Chapter 11: Precise wavelength measurements of tunable lasers”, Thomas Lucatorto et al. eds.: Experimental method in the physical sciences. Academic Press, pp. 311 ff. ISBN 0124759777.
- ↑ Peter J. Mohr, Barry N. Taylor, David B. Newell (2008). "CODATA recommended values of the fundamental physical constants: 2006". Rev Mod Phys vol. 80: pp. 633-730. See section 8: Measurements involving silicon crystals, p. 46.
- ↑ Lattice parameter of silicon. The NIST reference on constants, units and uncertainty. National Institute of Standards and Technology. Retrieved on 2011-04-04.
- ↑ A discussion of various types of gratings is found in Abdul Al-Azzawi (2006). “§3.2 Diffraction gratings”, Physical optics: principles and practices. CRC Press, pp. 46 ff. ISBN 0849382971.
- ↑ (2009) “Electron wavelength and relativity”, High-resolution electron microscopy, 3rd ed. Oxford University Press, p. 16. ISBN 0199552754.
- ↑ See Metrological traceability. BIPM. Retrieved on 2011-04-10.
- ↑ Michael T. Postek (2005). “Photomask critical dimension metrology in the scanning electron microscope”, Syed Rizvi: Handbook of photomask manufacturing technology. CRC Press, pp. 457 ff. ISBN 0824753747. and Harry J. Levinson (2005). “Chapter 9: Metrology”, Principles of lithography, 2nd ed. SPIE Press, pp. 313 ff. ISBN 0819456608.
- ↑ NG Orji et al. (2007). "TEM calibration methods for critical dimension standards". Proc. of SPIE vol. 6518. DOI:10.1117/12.713368. Research Blogging.