Inner product: Difference between revisions
imported>Hendra I. Nurdin (added some trivia) |
imported>Hendra I. Nurdin mNo edit summary |
||
Line 1: | Line 1: | ||
{{subpages}} | |||
In [[mathematics]], an '''inner product''' is an abstract notion on general [[vector space|vector spaces]] that is a generalization of the concept of the [[dot product]] in the Euclidean spaces. Among other things, the inner product on a vector space makes it possible to define the geometric operation of projection onto a [[closed set|closed]] (in the metric topology induced by the inner product) subspace, just like how the dot product makes it possible to define, in the Euclidean spaces, the projection of a vector onto the subspace spanned by a set of other vectors. The projection operation is a powerful geometric tool that makes the inner product a desirable convenience, especially for the purposes of [[optimization (mathematics)|optimization]] and [[approximation theory|approximation]]. | In [[mathematics]], an '''inner product''' is an abstract notion on general [[vector space|vector spaces]] that is a generalization of the concept of the [[dot product]] in the Euclidean spaces. Among other things, the inner product on a vector space makes it possible to define the geometric operation of projection onto a [[closed set|closed]] (in the metric topology induced by the inner product) subspace, just like how the dot product makes it possible to define, in the Euclidean spaces, the projection of a vector onto the subspace spanned by a set of other vectors. The projection operation is a powerful geometric tool that makes the inner product a desirable convenience, especially for the purposes of [[optimization (mathematics)|optimization]] and [[approximation theory|approximation]]. | ||
Revision as of 20:13, 6 October 2007
In mathematics, an inner product is an abstract notion on general vector spaces that is a generalization of the concept of the dot product in the Euclidean spaces. Among other things, the inner product on a vector space makes it possible to define the geometric operation of projection onto a closed (in the metric topology induced by the inner product) subspace, just like how the dot product makes it possible to define, in the Euclidean spaces, the projection of a vector onto the subspace spanned by a set of other vectors. The projection operation is a powerful geometric tool that makes the inner product a desirable convenience, especially for the purposes of optimization and approximation.
Formal definition of inner product
Let X be a vector space over a sub-field F of the complex numbers. An inner product on X is a sesquilinear[1] map from to with the following properties:
- and (linearity in the first slot)
- and (anti-linearity in the second slot)
- (in particular it means that is always real)
Properties 1 and 2 imply that .
Note that some authors, especially those working in quantum mechanics, may define an inner product to be anti-linear in the first slot and linear in the second slot, this is just a matter of preference. Moreover, if F is a subfield of the real numbers then the inner product becomes a bilinear map from to , that is, it becomes linear in both slots. In this case the inner product is said to be a real inner product (otherwise in general it is a complex inner product).
Norm and topology induced by an inner product
The inner product induces a norm on X defined by . Therefore it also induces a metric topology on X via the metric .
Reference
- ↑ T. Kato, A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag, New York (1982), ISBN 0-387-90666-5 p. 49