Talk:Riemann zeta function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Joe Quick
m (New page: {{subpages}})
 
imported>Barry R. Smith
No edit summary
Line 1: Line 1:
{{subpages}}
{{subpages}}
== Added Intro and History==
I removed the word "positive" from the index set for the Eulerian product, as the prime numbers page already defines prime numbers as being positive. I also changed the domain of validity of the series representation to all complex numbers with real part greater than 1. This will make less sense to a general audience, who probably won't understand complex exponents, but they also won't understand "analytic continuation", or "convergence" for that matter. As it seems standard to describe the domain of validity as the largest possible, I chose to change it. However, the definition for all real numbers > 1 does determine the analytic continuation uniquely, so the original description was not wrong.
Perhaps the functional equation, zeros, and special values should be lumped under a single heading, and then other headings could be created to describe things like various representations of the function and important results involving the function (like applications)? [[User:Barry R. Smith|Barry R. Smith]] 21:29, 27 March 2008 (CDT)

Revision as of 20:29, 27 March 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
To learn how to update the categories for this article, see here. To update categories, edit the metadata template.
 Definition Mathematical function of a complex variable important in number theory for its connection with the distribution of prime numbers. [d] [e]
Checklist and Archives
 Workgroup category Mathematics [Categories OK]
 Talk Archive 1  English language variant British English

Added Intro and History

I removed the word "positive" from the index set for the Eulerian product, as the prime numbers page already defines prime numbers as being positive. I also changed the domain of validity of the series representation to all complex numbers with real part greater than 1. This will make less sense to a general audience, who probably won't understand complex exponents, but they also won't understand "analytic continuation", or "convergence" for that matter. As it seems standard to describe the domain of validity as the largest possible, I chose to change it. However, the definition for all real numbers > 1 does determine the analytic continuation uniquely, so the original description was not wrong.

Perhaps the functional equation, zeros, and special values should be lumped under a single heading, and then other headings could be created to describe things like various representations of the function and important results involving the function (like applications)? Barry R. Smith 21:29, 27 March 2008 (CDT)