Half-life: Difference between revisions
imported>Robert W King No edit summary |
imported>David E. Volk No edit summary |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
''' | For any reactant subject to first-order decomposition, the amount of time needed for one half of the substance to decay is referred to as the '''half-life''' of that compound. Although the term is often associated with [[radioactive decay]], it also applies equally to chemical decomposition, such as the decomposition of [[azomethane]] (CH<sub>3</sub>N=NCH<sub>3</sub>) into methane and nitrogen gas. Many compounds decay so slowly that it is impractical to wait for half of the material to decay to determine the half-life. In such cases, a convenient fact is that the half-life is 693 times the amount of time required for 0.1% of the substance to decay. Using the value of the half-life of a compound, one can predict both future and past quantities. | ||
== Mathematics == | |||
The future concentration of a substance, C<sub>1</sub>, after some passage of time <math>\Delta</math>T, can easily be calculated if the present concentration, C<sub>0</sub>, and the half-life, T<sub>h</sub>, are known: | |||
:<math>C_1 = C_0 x e^\frac{\Delta_T}{T_h}</math> |
Revision as of 13:48, 25 April 2008
For any reactant subject to first-order decomposition, the amount of time needed for one half of the substance to decay is referred to as the half-life of that compound. Although the term is often associated with radioactive decay, it also applies equally to chemical decomposition, such as the decomposition of azomethane (CH3N=NCH3) into methane and nitrogen gas. Many compounds decay so slowly that it is impractical to wait for half of the material to decay to determine the half-life. In such cases, a convenient fact is that the half-life is 693 times the amount of time required for 0.1% of the substance to decay. Using the value of the half-life of a compound, one can predict both future and past quantities.
Mathematics
The future concentration of a substance, C1, after some passage of time T, can easily be calculated if the present concentration, C0, and the half-life, Th, are known: