Gyromagnetic ratio: Difference between revisions
imported>John R. Brews mNo edit summary |
imported>John R. Brews m (links) |
||
Line 8: | Line 8: | ||
The units of the gyromagnetic ratio are [[SI]] units are '''[[radian]] per [[second]] per [[tesla (unit)|tesla]]''' (s<sup>−1</sup>·T<sup> -1</sup>) or, equivalently, '''[[coulomb]] per [[kilogram]]''' (C·kg<sup>−1</sup>). When the object is placed in a [[magnetic flux density]] '''''B''''', because of its magnetic moment it experiences a [[torque]] and precesses about the field. | The units of the gyromagnetic ratio are [[SI]] units are '''[[radian]] per [[second]] per [[tesla (unit)|tesla]]''' (s<sup>−1</sup>·T<sup> -1</sup>) or, equivalently, '''[[coulomb]] per [[kilogram]]''' (C·kg<sup>−1</sup>). When the object is placed in a [[magnetic flux density]] '''''B''''', because of its magnetic moment it experiences a [[torque]] and precesses about the field. | ||
A closely related quantity is the '''''g'''''-'''factor''', which expresses the magnetic moment in units of ''magnetons'': in terms of the gyromagnetic ratio, ''g = ±γ''ℏ /''μ'' with ℏ the reduced [[Planck constant]] and ''μ'' the appropriate magneton (the Bohr magneton for electrons and the nuclear magneton for nucleii). The sign of the ''g''-factor is is negative when the magnetic moment is oriented opposite to the angular momentum (it is negative for | A closely related quantity is the '''''g'''''-'''factor''', which expresses the magnetic moment in units of ''magnetons'': in terms of the gyromagnetic ratio, ''g = ±γ''ℏ /''μ'' with ℏ the reduced [[Planck constant]] and ''μ'' the appropriate magneton (the Bohr magneton for electrons and the nuclear magneton for nucleii). The sign of the ''g''-factor is is negative when the magnetic moment is oriented opposite to the angular momentum (it is negative for [[electron]]s and [[neutrons]]) and positive when the two are aligned the same way (it is positive for [[proton]]s). More detail is below. | ||
==Examples== | ==Examples== |
Revision as of 10:40, 30 March 2011
The gyromagnetic ratio (sometimes magnetogyric ratio), γ, is the constant of proportionality between the magnetic moment (μ) and the angular momentum(J) of an object:
where the sign is chosen to make γ a positive number.
The units of the gyromagnetic ratio are SI units are radian per second per tesla (s−1·T -1) or, equivalently, coulomb per kilogram (C·kg−1). When the object is placed in a magnetic flux density B, because of its magnetic moment it experiences a torque and precesses about the field.
A closely related quantity is the g-factor, which expresses the magnetic moment in units of magnetons: in terms of the gyromagnetic ratio, g = ±γℏ /μ with ℏ the reduced Planck constant and μ the appropriate magneton (the Bohr magneton for electrons and the nuclear magneton for nucleii). The sign of the g-factor is is negative when the magnetic moment is oriented opposite to the angular momentum (it is negative for electrons and neutrons) and positive when the two are aligned the same way (it is positive for protons). More detail is below.
Examples
The electron gyromagnetic ratio is:[1]
where μe is the magnetic moment of the electron (-928.476 377 x 10-26 J T-1), and ℏ is Planck's constant divided by 2π and ℏ/2 is the spin angular momentum.
Similarly, the proton gyromagnetic ratio is:[2]
where μp is the magnetic moment of the proton (1.410 606 662 x 10-26 J T-1). Other ratios can be found on the NIST web site.[3]
Theory and experiment
The relativistic quantum mechanical theory provided by the Dirac equation predicted the electron to have a magnetic moment of exactly one Bohr magneton, where the Bohr magneton is:[4]
with e the elementary charge. If magnetic moment is expressed in units of Bohr magnetons, the gyromagnetic ratio becomes the g-factor and the magnetic moment becomes:
so the gyromagnetic ratio and the g-factor are related as:
The value of the g-factor for the electron is:[5]
The Dirac prediction μe = μB results in a g-factor of exactly ge = −2. Subsequently (in 1947) experiments on the Zeeman splitting of the gallium atom in magnetic field showed that was not exactly the case, and later this departure was calculated using quantum electrodynamics.[6]
Similarly, the nuclear magneton is defined:[7]
with mp the mass of the proton, and the proton g-factor is:[8]
corresponding to a proton magnetic moment of about 2.79 nuclear magnetons.
This surprising value suggests the proton is not a simple particle, but a complex structure, for example, an assembly of quarks. So far, a theoretical calculation of the magnetic moment of the proton in terms of quarks exchanging gluons is a work in progress, with the present estimate as 2.73 nuclear magnetons.[9]
Notes
- ↑ Electron gyromagnetic ratio. The NIST reference on constants, units, and uncertainty. Retrieved on 2011-03-28.
- ↑ Proton gyromagnetic ratio. The NIST reference on constants, units, and uncertainty. Retrieved on 2011-03-28.
- ↑ A general search menu for the NIST database is found at CODATA recommended values for the fundamental constants. National Institute of Standards and Technology. Retrieved on 2011-03-28.
- ↑ Bohr magneton. Fundamental physical constants. NIST. Retrieved on 2011-03-28.
- ↑ Electron g factor. Fundamental physical constants. NIST. Retrieved on 2011-03-28.
- ↑ An historical summary can be found in Toichiro Kinoshita (2010). “§3.2.2 Early tests of QED”, B. Lee Roberts, William J. Marciano, eds: Lepton dipole moments. World Scientific, pp. 73 ff. ISBN 9814271837. An introduction to the behavior of the electron in a magnetic flux is found in Yehuda Benzion Band (2006). “§5.1.1 Electron spin coupling”, Light and matter: electromagnetism, optics, spectroscopy and lasers. Wiley, pp. 297 ff. ISBN 0471899313.
- ↑ Nuclear magneton. Fundamental physical constants. NIST. Retrieved on 2011-03-28.
- ↑ Proton g factor. Fundamental physical constants. NIST. Retrieved on 2011-03-28.
- ↑ See, for example, Brian Martin (2009). “Table 3.5”, Nuclear and Particle Physics: An Introduction, 2nd ed. Wiley, p. 104. ISBN 0470742747. and Steven D. Bass (2008). “Chapter 1: Introduction”, The spin structure of the proton. World Scientific, pp. 1 ff. ISBN 9812709460.