CZ:Featured article/Current: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chunbum Park
No edit summary
imported>John Stephenson
(template)
 
(228 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{Image|Two diode structures.PNG|right|200px|Mesa diode structure (top) and planar diode structure with guard-ring (bottom).}}
{{:{{FeaturedArticleTitle}}}}
 
<small>
A '''[[semiconductor diode]]''' is a two-terminal device that conducts current in only one direction, made of two or more layers of which at least one is a semiconductor. An example is the ''pn''-diode, made by joining a ''p''-type semiconducting layer to an ''n''-type semiconducting layer. For a discussion of dopant impurities and the terminology ''p-'' and ''n-''type. see [[Semiconductor#Dopant_impurities|dopant impurities]].
==Footnotes==
 
{{reflist|2}}
The figure shows two of the many possible structures used for ''pn-''semiconductor diodes, both adapted to increase the voltage the devices can withstand in reverse bias. The top structure uses a mesa to avoid a sharp curvature of the ''p<sup>+</sup>-''region next to the adjoining ''n-''layer. The bottom structure uses a lightly doped ''p-''guard-ring at the edge of the sharp corner of the ''p<sup>+</sup>-''layer to spread the voltage out over a larger distance and reduce the electric field. (Superscripts like ''n<sup>+</sup>'' or ''n<sup>−</sup>'' refer to heavier or lighter impurity doping levels.)
</small>
==Types==
Semiconductor diodes come in a large variety of types:
*''pn''-diode: The ''pn'' junction diode consists of an ''n''-type semiconductor joined to a ''p''-type semiconductor.
*Zener diode: The Zener diode is a special type of ''pn''-diode made to operate in the reverse breakdown region, and used often as a voltage regulator. The breakdown voltage in these diodes is sometimes called the ''Zener voltage''. Depending upon the voltage range designed for, the diode may break down by either Zener breakdown, an electron tunneling behavior, or by avalanche breakdown.
*Schottky diode: The Schottky diode is made using a metal such as aluminum or platinum, on a lightly doped semiconductor substrate.
*Tunnel diode: Like the Zener diode, the tunnel diode (or Esaki diode) is made up of heavily doped ''n-'' and ''p''-type layers with a very abrupt transition between the two types. Conduction takes place by electron tunneling.
*Light-emitting diode: The light-emitting diode is designed to convert electrical current into light.
*Photodiode: The photodiode is the inverse of the light-emitting diode, acting as a photodetector, converting incident light to a detectable electric current.
*''pin''-diode: The ''pin''-diode is made of three layers: an intrinsic (undoped) layer between the ''p''- and ''n''-type layers. Because of its rapid switching characteristics it is used in microwave and radio-frequency applications.
*Gunn diode: The Gunn diode is a ''transferred electron device''  based upon the Gunn effect in III-V semiconductors, and is used to generate microwave oscillations.
*Varactor: a ''pn''-junction used in reverse bias as a voltage-variable capacitor for tuning radio receivers. The term ''varactor'' also is used for devices that behave like back-to-back Zener diodes.
 
[[semiconductor diode|...]]

Latest revision as of 10:19, 11 September 2020

Categories of smart home devices shown on Amazon's website in April 2023.

The phrase smart home refers to home automation devices that have internet access. Home automation, a broader category, includes any device that can be monitored or controlled via wireless radio signals, not just those having internet access. Whether the device is powered by the electrical grid or by battery, if it uses the home Wi-Fi network and if an internet logon needs to be created to use it, then it is smart home technology.

Collectively, all the smart home devices on every home's Wi-Fi network helps to make up what is called the Internet of Things (IoT), a huge sea of sensors and control devices across the world that are capable of being accessed from afar via the internet. One of the key reasons such devices need internet access is so that the manufacturer can periodically download updated firmware to the device to keep it up-to-date. However, being available via the internet also means that such devices are, potentially, available for spying or hacking. Today, homes may contain dozens or even hundreds of such devices, and consumers may enjoy their benefits while knowing little about how they work, or even realizing that they are present.

Not all home automation is "smart"

Many remotely controllable devices do not require internet access. They may instead have physical control devices that use either RF (“Radio Frequency”) or IR (“Infrared”) beams, two different kinds of energy used in remote controls to communicate commands. Non-"smart" home automation may also present security risks, because the control signals can be hijacked by bad actors with the right signaling equipment. Garage door openers are of particular note in this regard. Modern automobiles, in fact, are full of automation similar to home automation, and cars are hackable by bad actors in a number of ways. See Wikipedia's Automotive hacking article for more information.

Incompatibility hassles

At present, consumers must make sure that the smart device they wish to use is specified to be compatible whichever phone/tablet operating system they use (Apple vs. Android). Since smart home products emerged in the absence of any standard, a morass of competing methods for networking, control and monitoring now exist. For some products, consumers may need to buy an expensive hub, or bridge, a device that is specific to one vendor. Products made by different manufacturers but performing the same function are typically not interoperable. Consumers often need to open a different app on their smartphone or tablet in order to control devices by each manufacturer. This may make it too expensive and awkward to try out competing devices, leaving consumers stuck with the product they bought originally or else having to add yet more apps to their phones.

Security concerns

Security for smart home products has been uneven and sometimes seriously inadequate. Smart thermostats which can monitor whether a home's occupants are present or not, entry-way locks, robotic vacuums that work with a map of the house, and other smart home devices can present very real dangers if hackers can access their data.

Matter, an emerging standard

Matter is emerging standard in 2023 intended to increase security, reliability and inter-operability of smart-home devices. About ten years ago, industry consortiums formed to work on standards for smart home device communications, and their underlying wireless communications, which would make it possible for products from all vendors to work together seamlessly and provide fast performance, privacy, and security and would work even if there is not connection to the outside internet (i.e., no connection to "the cloud" or to servers).

Footnotes