Bessel functions: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
imported>Dmitrii Kouznetsov
No edit summary
Line 1: Line 1:
{{subpages}}
{{subpages}}
[[File:Besselj0j1plotT.png|400px|thumb|Explicit plots of the <math>J_0</math> and <math>J_1</math> from <ref name="toriplot">
http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj0j1plotT.png
Explicit plots of the <math>J_0</math> and <math>J_1</math>.
</ref>]]
'''Bessel functions''' are solutions of the Bessel differential equation:<ref>{{cite book|author=Frank Bowman|title=Introduction to Bessel Functions|edition=1st Edition|publisher=Dover Publications|year=1958|id=ISBN 0-486-60462-4}}</ref><ref>{{cite book|author=George Neville Watson|title=A Treatise on the Theory of Bessel Functions|edition=2nd Edition|publisher=Cambridge University Press|year=1966|id=}}</ref><ref>[http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html Bessel Function of the First Kind] Eric W. Weisstein, From the website of "MathWorld--A Wolfram Web Resource".</ref>
'''Bessel functions''' are solutions of the Bessel differential equation:<ref>{{cite book|author=Frank Bowman|title=Introduction to Bessel Functions|edition=1st Edition|publisher=Dover Publications|year=1958|id=ISBN 0-486-60462-4}}</ref><ref>{{cite book|author=George Neville Watson|title=A Treatise on the Theory of Bessel Functions|edition=2nd Edition|publisher=Cambridge University Press|year=1966|id=}}</ref><ref>[http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html Bessel Function of the First Kind] Eric W. Weisstein, From the website of "MathWorld--A Wolfram Web Resource".</ref>



Revision as of 06:24, 13 July 2012

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Explicit plots of the and from [1]

Bessel functions are solutions of the Bessel differential equation:[2][3][4]

where α is a constant.

Because this is a second-order differential equation, it should have two linearly-independent solutions:

(i) Jα(x) and
(ii) Yα(x).

In addition, a linear combination of these solutions is also a solution:

(iii) Hα(x) = C1 Jα(x) + C2 Yα(x)

where C1 and C2 are constants.

These three kinds of solutions are called Bessel functions of the first kind, second kind, and third kind.

Properties

Many properties of functions $J$, $Y$ and $H$ are collected at the handbook by Abramowitz, Stegun [5].

Integral representations

Expansions at small argument

The series converges in the whole complex $z$ plane, but fails at negative integer values of . The postfix form of factorial is used above; .

Applications

Bessel functions arise in many applications. For example, Kepler’s Equation of Elliptical Motion, the vibrations of a membrane, and heat conduction, to name a few. In paraxial optics the Bessel functions are used to describe solutions with circular symmetry.

References

  1. http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj0j1plotT.png Explicit plots of the and .
  2. Frank Bowman (1958). Introduction to Bessel Functions, 1st Edition. Dover Publications. ISBN 0-486-60462-4. 
  3. George Neville Watson (1966). A Treatise on the Theory of Bessel Functions, 2nd Edition. Cambridge University Press. 
  4. Bessel Function of the First Kind Eric W. Weisstein, From the website of "MathWorld--A Wolfram Web Resource".
  5. http://people.math.sfu.ca/~cbm/aands/page_358.htm M. Abramowitz and I. A. Stegun. Handbook of mathematical functions.