Bessel functions: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David Binner
mNo edit summary
 
(34 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}
Bessel functions are solutions of the Bessel differential equation:
[[File:Besselj0j1plotT.png|400px|thumb|Explicit plots of the <math>J_0</math> and <math>J_1</math> from <ref name="toriplot">
http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj0j1plotT.png
Explicit plots of the <math>J_0</math> and <math>J_1</math>.
</ref>]]
[[File:Besselj1mapT080.png|400px|thumb|[[Complex map]] of <math>J_1</math> by
<ref name="torimapj0">
http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj1map1T080.png
Complex map of the Bessel function BesselJ1.
</ref>;
<math>u+\mathrm i v = J_1(x+\mathrm i y)</math>
]].
'''Bessel functions''' are solutions of the Bessel differential equation:<ref>{{cite book|author=Frank Bowman|title=Introduction to Bessel Functions|edition=1st Edition|publisher=Dover Publications|year=1958|id=ISBN 0-486-60462-4}}</ref><ref>{{cite book|author=George Neville Watson|title=A Treatise on the Theory of Bessel Functions|edition=2nd Edition|publisher=Cambridge University Press|year=1966|id=}}</ref><ref>[http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html Bessel Function of the First Kind] Eric W. Weisstein, From the website of "MathWorld--A Wolfram Web Resource".</ref>


<math>''z''<sup>2</sup> (d<sup>2</sup>w/dz<sup>2</sup>) + z (dw/dz) + (z<sup>2</sup> - &alpha;<sup>2</sup>)</math>
:<math> z^2 \frac {d^2 w}{dz^2} + z \frac {dw}{dz} + (z^2 - \alpha^2)w = 0 </math>


where &alpha; is a constant.
where &alpha; is a constant.
Line 13: Line 24:
In addition, a linear combination of these solutions is also a solution:
In addition, a linear combination of these solutions is also a solution:


(iii) H<sub>&alpha;</sub> = C<sub>1</sub> J<sub>&alpha;</sub>(x) + C<sub>2</sub> Y<sub>&alpha;</sub>(x)
(iii) H<sub>&alpha;</sub>(x) = C<sub>1</sub> J<sub>&alpha;</sub>(x) + C<sub>2</sub> Y<sub>&alpha;</sub>(x)


where C<sub>1</sub> and  C<sub>2</sub> are constants.
where C<sub>1</sub> and  C<sub>2</sub> are constants.
Line 19: Line 30:
These three kinds of solutions are called Bessel functions of the first kind, second kind, and third kind.
These three kinds of solutions are called Bessel functions of the first kind, second kind, and third kind.


===Applications===
==Properties==
Many properties of functions $J$, $Y$ and $H$ are collected at the handbook by [[Abramowitz, Stegun]]
<ref>
http://people.math.sfu.ca/~cbm/aands/page_358.htm
M. Abramowitz and I. A. Stegun.
Handbook of mathematical functions.
</ref>.


Bessel functions arise in many applications. For example, Kepler’s Equation of Elliptical Motion, the vibrations of a membrane, and heat conduction, to name a few.
===Integral representations===


=== Bibliography ===


1) Weisstein, Eric W.<br/>
: <math> \!\!\!\!\!\!\!\!\!\! (9.1.20) ~ ~ ~ \displaystyle
  "Bessel Function of the First Kind."<br/>
J_\nu(z) = \frac{(z/2)^{\nu}}{\pi^{1/2} ~(\nu-1/2)!}
From MathWorld--A Wolfram Web Resource.<br/>
~
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
\int_0^\pi
~
\cos(z \cos(t)) \sin(t)^{2 \nu} ~t~ \mathrm d t
</math>


2) “Introduction to Bessel Functions”<br/>
===Expansions at small argument===
by Frank Bowman<br/>
Dover Publications, Inc.<br/>
New York<br/>
1958


3) “A Treatise on the Theory of Bessel Functions”<br/>
: <math>\displaystyle  J_\alpha(z)
by G. N. Watson<br/>
=\left(\frac{z}{2}\right)^{\!\alpha} ~
Second Edition<br/>
\sum_{k=0}^{\infty}
Cambridge University Press<br/>
~ \frac{ (-z^2/4)^k}{ k! ~ (\alpha\!+\!k)!}
1966
</math>
 
The series converges in the whole complex $z$ plane, but fails at negative integer values of <math>\alpha</math> . The postfix form of [[factorial]] is used above; <math>k!=\mathrm{Factorial}(k)</math>.
 
==Applications==
 
Bessel functions arise in many applications. For example, [[Johannes Kepler|Kepler]]’s [[Kepler's laws|Equation of Elliptical Motion]], the vibrations of a membrane, and heat conduction, to name a few.
In [[paraxial optics]] the Bessel functions are used to describe solutions with circular symmetry.
 
==References==
 
{{reflist}}[[Category:Suggestion Bot Tag]]

Latest revision as of 06:01, 18 July 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Explicit plots of the and from [1]
Complex map of by [2];

.

Bessel functions are solutions of the Bessel differential equation:[3][4][5]

where α is a constant.

Because this is a second-order differential equation, it should have two linearly-independent solutions:

(i) Jα(x) and
(ii) Yα(x).

In addition, a linear combination of these solutions is also a solution:

(iii) Hα(x) = C1 Jα(x) + C2 Yα(x)

where C1 and C2 are constants.

These three kinds of solutions are called Bessel functions of the first kind, second kind, and third kind.

Properties

Many properties of functions $J$, $Y$ and $H$ are collected at the handbook by Abramowitz, Stegun [6].

Integral representations

Expansions at small argument

The series converges in the whole complex $z$ plane, but fails at negative integer values of . The postfix form of factorial is used above; .

Applications

Bessel functions arise in many applications. For example, Kepler’s Equation of Elliptical Motion, the vibrations of a membrane, and heat conduction, to name a few. In paraxial optics the Bessel functions are used to describe solutions with circular symmetry.

References

  1. http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj0j1plotT.png Explicit plots of the and .
  2. http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj1map1T080.png Complex map of the Bessel function BesselJ1.
  3. Frank Bowman (1958). Introduction to Bessel Functions, 1st Edition. Dover Publications. ISBN 0-486-60462-4. 
  4. George Neville Watson (1966). A Treatise on the Theory of Bessel Functions, 2nd Edition. Cambridge University Press. 
  5. Bessel Function of the First Kind Eric W. Weisstein, From the website of "MathWorld--A Wolfram Web Resource".
  6. http://people.math.sfu.ca/~cbm/aands/page_358.htm M. Abramowitz and I. A. Stegun. Handbook of mathematical functions.