Square root of two: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Johan Förberg
(→‎Proof of Irrationality: Added Pythagoras and reductio ad absurdum)
mNo edit summary
 
Line 17: Line 17:
Through simplification, we find that <math>4 \times k^2 = 2 \times y^2</math>, and then that, <math>2 \times k^2 = y^2</math>,
Through simplification, we find that <math>4 \times k^2 = 2 \times y^2</math>, and then that, <math>2 \times k^2 = y^2</math>,


Since <math>k</math> is an integer, <math>y^2</math> and therefore also <math>y</math> must ''also'' be even. However, if <math>x</math> and <math>y</math> are both even, they share a common [[factor]] of 2, making them ''not'' mutually prime. And that is a contradiction, so the assumption must be false, and <math>\sqrt{2}</math> must not be rational.
Since <math>k</math> is an integer, <math>y^2</math> and therefore also <math>y</math> must ''also'' be even. However, if <math>x</math> and <math>y</math> are both even, they share a common [[factor]] of 2, making them ''not'' mutually prime. And that is a contradiction, so the assumption must be false, and <math>\sqrt{2}</math> must not be rational.[[Category:Suggestion Bot Tag]]

Latest revision as of 12:00, 21 October 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The square root of two, denoted , is the positive number whose square equals 2. It is approximately 1.4142135623730950488016887242097. It provides a typical example of an irrational number.

In Right Triangles

The square root of two plays an important role in right triangles in that a unit right triangle (where both legs are equal to 1), has a hypotenuse of . Thus, .

Proof of Irrationality

There exists a simple proof by contradiction showing that is irrational. This proof is often attributed to Pythagoras. It is an example of a reductio ad absurdum type of proof:

Suppose is rational. Then there must exist two numbers, , such that and and represent the smallest such integers (i.e., they are mutually prime).

Therefore, and ,

Thus, represents an even number; therefore must also be even. This means that there is an integer such that . Inserting it back into our previous equation, we find that

Through simplification, we find that , and then that, ,

Since is an integer, and therefore also must also be even. However, if and are both even, they share a common factor of 2, making them not mutually prime. And that is a contradiction, so the assumption must be false, and must not be rational.