Magnetic induction: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
mNo edit summary
 
(25 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}
In [[physics]], and more in particular in the theory of [[electromagnetism]], '''magnetic induction''' (commonly denoted by '''B''') is a vector field closely related to the [[magnetic field]] '''H'''. Magnetic induction is also known as [[magnetic flux]] density.
In [[physics]], and more in particular in the theory of [[electromagnetism]], '''magnetic induction''' (also known as '''magnetic flux density''') describes a magnetic field (a vector) at  every point in space. The magnetic induction is commonly denoted by '''B'''('''r''',''t'') and is a [[vector field]], that is, it depends on position '''r'''  and time ''t''.  In non-relativistic physics, the space on which '''B''' is defined is the three-dimensional [[Euclidean space]] <math>\scriptstyle \mathbb{E}^3</math>&mdash;the infinite world that we live in.  The field '''B''' is closely related to the [[magnetic field]] '''H''', often called the ''magnetic field intensity'', and sometimes just the ''H''-field. In fact, some authors refer to '''B''' as the magnetic field and to '''H''' as an auxiliary field.


The SI unit measuring the strength of '''B''' is T (tesla), and the Gaussian unit is gauss. One tesla is 10&thinsp;000 gauss. To indicate the order of magnitude: the magnetic field (or better magnetic induction) of the Earth is about 0.5 gauss = 50 &mu;T. A medical MRI diagnostic machine typically supports a field of 2 T. The strongest magnets in laboratories are presently about 30 T.
The physical source of the field '''B''' can be 
* one or more permanent [[magnetism|magnet]]s (see [[Coulomb's law (magnetic)|Coulomb's magnetic law]]); more microscopically, the fundamental [[spin]]s of [[elementary particle]]s like [[electron]]s, and their orbital [[Angular momentum (quantum)|angular momentum]].
* one or more electric currents (see [[Biot-Savart's law]]),
* time-dependent electric fields (see [[displacement current]]),
or combinations of these three. A magnetic field exists in the neighborhood of these sources. In general the strength  of the magnetic field decreases as a low power of 1/''R'',  the inverse of the distance ''R'' to the source.
 
A magnetic force can act on 
* a permanent magnet (which is a [[magnetic dipole]] or&mdash;approximately&mdash;two magnetic monopoles),
* magnetizable ([[ferromagnetic]]) material like iron,
* moving electric charges (through the [[Lorentz force]])
* elementary particles through their intrinsic spin, which is related to their intrinsic magnetic properties through their [[gyromagnetic ratio]]s.
 
The term ''magnetic flux density''  refers to the fact that '''B''' is [[magnetic flux]]
per unit surface. This relationship is based on [[Faraday's law]] of magnetic induction. 
 
The [[SI|SI unit]] measuring the strength of '''B''' is T ([[tesla (unit)|tesla]] = [[weber (unit)|weber]]/m<sup>2</sup>), and the [[Gaussian unit]] of '''B''' is G ([[gauss (unit)|gauss]] = [[maxwell (unit)|maxwell]]/cm<sup>2</sup>) . One tesla is 10&thinsp;000 gauss.  
 
To give an indication of magnitudes: the magnetic field (or better: magnetic induction) of the Earth is about 0.5 G (50 &mu;T). A horse shoe magnet is about 100 G. A medical MRI diagnostic machine typically supports a field of up to 2 T (20 kG). The strongest magnets in laboratories are currently about 30 T (300 kG).


==Note on nomenclature==
==Note on nomenclature==
Every textbook on electricity and magnetism distinguishes the magnetic ''field'' '''H''' from the magnetic ''induction'' '''B'''. Yet, in practice physicists and chemists almost always call '''B''' a ''magnetic field''. It is likely that this is because the term "induction" implies somehow an induced magnetic moment, which usually is not present. Hence the term "inductionis confusing. In science, phrases as: "This EPR spectrum was measured at a magnetic field of 3400 gauss", and "Our magnet can achieve magnetic fields  as high as 20 tesla" are common. Most scientists use the term "field", well aware of the fact that, strictly speaking, gauss and tesla are units of magnetic induction.
Most textbooks on electricity and magnetism distinguish the magnetic field '''H''' and the magnetic induction '''B'''. Yet, in practice physicists and chemists almost always call '''B''' the ''magnetic field'', which  is because the term "induction" suggests an induced magnetic moment. Since an induced moment is usually not in evidence, the term induction is felt to be confusing. Among scientists phrases are common as: "This EPR spectrum was measured at a magnetic field of 3400 gauss", and "Our magnet can achieve magnetic fields  as high as 20 tesla". That is, most scientists use the term "field" with units tesla or gauss, while strictly speaking, gauss and tesla are units of '''B'''. Some authors go one step further and reserve the name "magnetic field" for '''B''' and refer to '''H''' as the "auxiliary magnetic field".


==Relation between '''B''' and '''H'''==
==Relation between '''B''' and '''H'''==
In vacuum, that is, in the absence of a ponderable, continuous, and magnetizable medium, the fields '''B''' and '''H''' are related as follows,
In [[Vacuum (classical)|vacuum]] (also known as the microscopic case, see [[Maxwell equations]]), in the absence of a magnetizable medium, the fields '''B''' and '''H''' are related as follows,
:<math>
:<math>
\begin{align}
\begin{align}
Line 15: Line 32:
\end{align}
\end{align}
</math>
</math>
where &mu;<sub>0</sub> is the [[magnetic constant]] (equal to 4&pi;&sdot;10<sup>&minus;7</sup> N/A<sup>2</sup>).  Note that with the use of Gaussian units and in vacuum, the dimensions of '''H''' (Oer) and of '''B''' (G = gauss) are equal, 1 Oer = 1 G.
where &mu;<sub>0</sub> is the [[magnetic constant]] (equal to 4&pi;&sdot;10<sup>&minus;7</sup> N/A<sup>2</sup>).  Note that in Gaussian units the dimensions of '''H''' (Oer) and of '''B''' (G = gauss) are equal, 1 Oer = 1 G, although the units have an unrelated  definition (Oer is based on the field of a [[solenoid]], and G is [[magnetic flux]]/surface). In the absence of a magnetizable medium it is  unnecessary  to introduce both '''B''' and '''H''', because they differ by an exact and constant factor (unity for Gaussian units and &mu;<sub>0</sub> for SI units).  


In a continuous magnetizable medium the relation between '''B''' and '''H''' contains the [[magnetization]] '''M''' of the medium,
At a microscopic level, the magnetic flux '''B''' and the electric field '''E''' determine the behavior of charges. For example, a single moving charge is subject to the [[Lorentz force|Lorentz force law]], which in [[SI units]] is:
 
:<math>\mathbf{F} = q \left( \mathbf{E + v \times B }\right) \ . </math>
 
However, treating all the charges in a system at a microscopic level is impractical, and approximations are introduced. Some of the system is treated microscopically, and some is treated as "materials", in particular, dielectrics and magnetic materials. The response of a magnetic material to magnetic flux is introduced through the ''[[magnetization]]'' of the material, another vector field {{nowrap|'''M'''('''r''', ''t'')}}.
 
In the presence of a magnetizable medium the relation between '''B''' and '''H''' involves the [[magnetization]] '''M''' of the medium,
:<math>
:<math>
\begin{align}
\begin{align}
Line 24: Line 47:
\end{align}
\end{align}
</math>
</math>
which expresses the fact that '''B'''  is modified by the induction of a magnetic moment (non-zero magnetization) in the medium.


In almost all non-[[ferromagnetic]] media, the magnetization '''M''' is linear in '''H''',  
To actually determine the system behavior, the magnetization '''M''' must be determined in terms of either '''B''' or '''H''' so that the system response depends only upon one field variable. This determination of '''M''' can be very complicated. For example, it may involve introduction of [[quantum mechanics]] and [[statistical mechanics]] as studied in the field of [[condensed matter physics]]. However, in many non-[[ferromagnetic]] media, the magnetization '''M''' is linear in '''H''',  
:<math>
:<math>
\mathbf{M} = \boldsymbol{\chi} \mathbf{H} \quad \Longleftrightarrow \quad
\mathbf{M} = \boldsymbol{\chi} \mathbf{H} \quad \Longleftrightarrow \quad
M_\alpha = \sum_{\beta = x,y,z} \chi_{\alpha\beta} H_\beta.
M_\alpha = \sum_{\beta = x,y,z} \chi_{\alpha\beta} H_\beta.
</math>  
</math>  
For a magnetically  ''isotropic'' medium the ''[[magnetic susceptibility]] tensor'' '''&chi;''' is a constant times the identity  3&times;3 matrix, '''&chi;''' = &chi;<sub>m</sub> '''1'''. For an isotropic medium we obtain for SI and Gaussian units, respectively, the relation between '''B''' and '''H''',
For a magnetically  ''isotropic'' medium the ''[[magnetic susceptibility]] tensor'' '''&chi;''' is a constant times the identity  3&times;3 matrix, '''&chi;''' = {{nowrap|&chi;<sub>m</sub> '''1'''.}} For an isotropic medium the relation between '''B''' and '''H''' is in SI and Gaussian units, respectively,
:<math>
:<math>
\begin{align}
\begin{align}
Line 38: Line 60:
\end{align}
\end{align}
</math>
</math>
The material constant &mu;, which expresses the "ease" of magnetization of the medium, is called the [[magnetic permeability]] of the medium. In most non-ferromagnetic materials &chi;<sub>m</sub> << 1 and consequently '''B''' &asymp; &mu;<sub>0</sub>'''H''' (SI) or '''B''' &asymp;  '''H''' (Gaussian).
The material constant &mu;, which expresses the "ease" of magnetization of the medium, is the [[magnetic permeability]] of the medium. In most non-ferromagnetic materials &chi;<sub>m</sub> << 1 and consequently '''B''' &asymp; &mu;<sub>0</sub>'''H''' (SI) or '''B''' &asymp;  '''H''' (Gaussian). For [[ferromagnetism|ferromagnetic]] materials the  magnetic permeability &mu; can be sizeable (&chi;<sub>m</sub> >> 1). In that case the magnetization of the medium greatly enhances the magnetic field.
 
The two macroscopic  [[Maxwell equations]]  that contain charges and currents, are equations for '''H''' and electric displacement '''D'''. This is a consequence of the fact that current densities '''J''' and  electric fields '''E''' (due to charges) are modified by the magnetization '''M''' and the polarization '''P''' of the medium. In SI units the Maxwell equation for the magnetic field is:
:<math>
\boldsymbol{\nabla} \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}.
</math>
The microscopic (no medium) form of this equation is obtained by eliminating '''D''' and '''H''' via
'''D''' = &epsilon;<sub>0</sub>'''E''' and '''H''' = '''B'''/&mu;<sub>0</sub> ('''P''' = 0 and '''M''' = 0).
 
The two Maxwell equations that do not contain currents and charges give relations between the fundamental fields  '''E''' and '''B''', instead of between the auxiliary fields '''H''' and '''D'''. For instance, [[Faraday's law (electromagnetism)|Faraday's induction law]] in SI units is,
:<math>
\boldsymbol{\nabla} \times \mathbf{E}  = - \frac{\partial \mathbf{B}}{\partial t} .
</math>
This equation is valid microscopically (vacuum) as well as macroscopically (in presence of a medium). But, of course, in the microscopic case the detailed microscopic currents and charges due to the elementary sources appear, while in the macroscopic case some of these microscopic currents and charges are subsumed in the material properties, the various permittivities and permeabilities, for example. Thus the '''''E'''''- and '''''B'''''-fields in the two situations differ, with the macroscopic fields being averaged to remove some of the microscopic detail.[[Category:Suggestion Bot Tag]]

Latest revision as of 16:01, 14 September 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In physics, and more in particular in the theory of electromagnetism, magnetic induction (also known as magnetic flux density) describes a magnetic field (a vector) at every point in space. The magnetic induction is commonly denoted by B(r,t) and is a vector field, that is, it depends on position r and time t. In non-relativistic physics, the space on which B is defined is the three-dimensional Euclidean space —the infinite world that we live in. The field B is closely related to the magnetic field H, often called the magnetic field intensity, and sometimes just the H-field. In fact, some authors refer to B as the magnetic field and to H as an auxiliary field.

The physical source of the field B can be

or combinations of these three. A magnetic field exists in the neighborhood of these sources. In general the strength of the magnetic field decreases as a low power of 1/R, the inverse of the distance R to the source.

A magnetic force can act on

  • a permanent magnet (which is a magnetic dipole or—approximately—two magnetic monopoles),
  • magnetizable (ferromagnetic) material like iron,
  • moving electric charges (through the Lorentz force)
  • elementary particles through their intrinsic spin, which is related to their intrinsic magnetic properties through their gyromagnetic ratios.

The term magnetic flux density refers to the fact that B is magnetic flux per unit surface. This relationship is based on Faraday's law of magnetic induction.

The SI unit measuring the strength of B is T (tesla = weber/m2), and the Gaussian unit of B is G (gauss = maxwell/cm2) . One tesla is 10 000 gauss.

To give an indication of magnitudes: the magnetic field (or better: magnetic induction) of the Earth is about 0.5 G (50 μT). A horse shoe magnet is about 100 G. A medical MRI diagnostic machine typically supports a field of up to 2 T (20 kG). The strongest magnets in laboratories are currently about 30 T (300 kG).

Note on nomenclature

Most textbooks on electricity and magnetism distinguish the magnetic field H and the magnetic induction B. Yet, in practice physicists and chemists almost always call B the magnetic field, which is because the term "induction" suggests an induced magnetic moment. Since an induced moment is usually not in evidence, the term induction is felt to be confusing. Among scientists phrases are common as: "This EPR spectrum was measured at a magnetic field of 3400 gauss", and "Our magnet can achieve magnetic fields as high as 20 tesla". That is, most scientists use the term "field" with units tesla or gauss, while strictly speaking, gauss and tesla are units of B. Some authors go one step further and reserve the name "magnetic field" for B and refer to H as the "auxiliary magnetic field".

Relation between B and H

In vacuum (also known as the microscopic case, see Maxwell equations), in the absence of a magnetizable medium, the fields B and H are related as follows,

where μ0 is the magnetic constant (equal to 4π⋅10−7 N/A2). Note that in Gaussian units the dimensions of H (Oer) and of B (G = gauss) are equal, 1 Oer = 1 G, although the units have an unrelated definition (Oer is based on the field of a solenoid, and G is magnetic flux/surface). In the absence of a magnetizable medium it is unnecessary to introduce both B and H, because they differ by an exact and constant factor (unity for Gaussian units and μ0 for SI units).

At a microscopic level, the magnetic flux B and the electric field E determine the behavior of charges. For example, a single moving charge is subject to the Lorentz force law, which in SI units is:

However, treating all the charges in a system at a microscopic level is impractical, and approximations are introduced. Some of the system is treated microscopically, and some is treated as "materials", in particular, dielectrics and magnetic materials. The response of a magnetic material to magnetic flux is introduced through the magnetization of the material, another vector field M(r, t).

In the presence of a magnetizable medium the relation between B and H involves the magnetization M of the medium,

To actually determine the system behavior, the magnetization M must be determined in terms of either B or H so that the system response depends only upon one field variable. This determination of M can be very complicated. For example, it may involve introduction of quantum mechanics and statistical mechanics as studied in the field of condensed matter physics. However, in many non-ferromagnetic media, the magnetization M is linear in H,

For a magnetically isotropic medium the magnetic susceptibility tensor χ is a constant times the identity 3×3 matrix, χ = χm 1. For an isotropic medium the relation between B and H is in SI and Gaussian units, respectively,

The material constant μ, which expresses the "ease" of magnetization of the medium, is the magnetic permeability of the medium. In most non-ferromagnetic materials χm << 1 and consequently B ≈ μ0H (SI) or BH (Gaussian). For ferromagnetic materials the magnetic permeability μ can be sizeable (χm >> 1). In that case the magnetization of the medium greatly enhances the magnetic field.

The two macroscopic Maxwell equations that contain charges and currents, are equations for H and electric displacement D. This is a consequence of the fact that current densities J and electric fields E (due to charges) are modified by the magnetization M and the polarization P of the medium. In SI units the Maxwell equation for the magnetic field is:

The microscopic (no medium) form of this equation is obtained by eliminating D and H via D = ε0E and H = B0 (P = 0 and M = 0).

The two Maxwell equations that do not contain currents and charges give relations between the fundamental fields E and B, instead of between the auxiliary fields H and D. For instance, Faraday's induction law in SI units is,

This equation is valid microscopically (vacuum) as well as macroscopically (in presence of a medium). But, of course, in the microscopic case the detailed microscopic currents and charges due to the elementary sources appear, while in the macroscopic case some of these microscopic currents and charges are subsumed in the material properties, the various permittivities and permeabilities, for example. Thus the E- and B-fields in the two situations differ, with the macroscopic fields being averaged to remove some of the microscopic detail.