Bessel functions: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
(add expansion of J_a at zero)
mNo edit summary
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}
[[File:Besselj0j1plotT.png|400px|thumb|Explicit plots of the <math>J_0</math> and <math>J_1</math> from <ref name="toriplot">
http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj0j1plotT.png
Explicit plots of the <math>J_0</math> and <math>J_1</math>.
</ref>]]
[[File:Besselj1mapT080.png|400px|thumb|[[Complex map]] of <math>J_1</math> by
<ref name="torimapj0">
http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj1map1T080.png
Complex map of the Bessel function BesselJ1.
</ref>;
<math>u+\mathrm i v = J_1(x+\mathrm i y)</math>
]].
'''Bessel functions''' are solutions of the Bessel differential equation:<ref>{{cite book|author=Frank Bowman|title=Introduction to Bessel Functions|edition=1st Edition|publisher=Dover Publications|year=1958|id=ISBN 0-486-60462-4}}</ref><ref>{{cite book|author=George Neville Watson|title=A Treatise on the Theory of Bessel Functions|edition=2nd Edition|publisher=Cambridge University Press|year=1966|id=}}</ref><ref>[http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html Bessel Function of the First Kind] Eric W. Weisstein, From the website of "MathWorld--A Wolfram Web Resource".</ref>
'''Bessel functions''' are solutions of the Bessel differential equation:<ref>{{cite book|author=Frank Bowman|title=Introduction to Bessel Functions|edition=1st Edition|publisher=Dover Publications|year=1958|id=ISBN 0-486-60462-4}}</ref><ref>{{cite book|author=George Neville Watson|title=A Treatise on the Theory of Bessel Functions|edition=2nd Edition|publisher=Cambridge University Press|year=1966|id=}}</ref><ref>[http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html Bessel Function of the First Kind] Eric W. Weisstein, From the website of "MathWorld--A Wolfram Web Resource".</ref>


Line 28: Line 39:


===Integral representations===
===Integral representations===
: <math> \!\!\!\!\!\!\!\!\!\! (9.1.20) ~ ~ ~ \displaystyle
J_\nu(z) = \frac{(z/2)^{\nu}}{\pi^{1/2} ~(\nu-1/2)!}
~
\int_0^\pi
~
\cos(z \cos(t)) \sin(t)^{2 \nu} ~t~ \mathrm d t
</math>


===Expansions at small argument===
===Expansions at small argument===
Line 37: Line 57:
</math>
</math>


The series converges in the whole complex plane, but fails at negative integer values of <math>\alpha</math> . The postfix form of [[factorial]] is used above; <math>k!</math>=\mathrm{Factorial}(k)</math>.
The series converges in the whole complex $z$ plane, but fails at negative integer values of <math>\alpha</math> . The postfix form of [[factorial]] is used above; <math>k!=\mathrm{Factorial}(k)</math>.


==Applications==
==Applications==
Line 46: Line 66:
==References==
==References==


{{reflist}}
{{reflist}}[[Category:Suggestion Bot Tag]]

Latest revision as of 06:01, 18 July 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Explicit plots of the and from [1]
Complex map of by [2];

.

Bessel functions are solutions of the Bessel differential equation:[3][4][5]

where α is a constant.

Because this is a second-order differential equation, it should have two linearly-independent solutions:

(i) Jα(x) and
(ii) Yα(x).

In addition, a linear combination of these solutions is also a solution:

(iii) Hα(x) = C1 Jα(x) + C2 Yα(x)

where C1 and C2 are constants.

These three kinds of solutions are called Bessel functions of the first kind, second kind, and third kind.

Properties

Many properties of functions $J$, $Y$ and $H$ are collected at the handbook by Abramowitz, Stegun [6].

Integral representations

Expansions at small argument

The series converges in the whole complex $z$ plane, but fails at negative integer values of . The postfix form of factorial is used above; .

Applications

Bessel functions arise in many applications. For example, Kepler’s Equation of Elliptical Motion, the vibrations of a membrane, and heat conduction, to name a few. In paraxial optics the Bessel functions are used to describe solutions with circular symmetry.

References

  1. http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj0j1plotT.png Explicit plots of the and .
  2. http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj1map1T080.png Complex map of the Bessel function BesselJ1.
  3. Frank Bowman (1958). Introduction to Bessel Functions, 1st Edition. Dover Publications. ISBN 0-486-60462-4. 
  4. George Neville Watson (1966). A Treatise on the Theory of Bessel Functions, 2nd Edition. Cambridge University Press. 
  5. Bessel Function of the First Kind Eric W. Weisstein, From the website of "MathWorld--A Wolfram Web Resource".
  6. http://people.math.sfu.ca/~cbm/aands/page_358.htm M. Abramowitz and I. A. Stegun. Handbook of mathematical functions.