Zermelo-Fraenkel axioms: Difference between revisions
Jump to navigation
Jump to search
imported>John R. Brews (provide axioms in logic symbol notation) |
mNo edit summary |
||
(2 intermediate revisions by one other user not shown) | |||
Line 5: | Line 5: | ||
==The axioms== | ==The axioms== | ||
There are eight Zermelo-Fraenkel (ZF) axioms;<ref name=Jech/> for the meaning of the symbols, see [[Logic symbols]]. The numbering of these axioms varies from author to author. | There are eight Zermelo-Fraenkel (ZF) axioms;<ref name=Jech/> for the meaning of the symbols, see [[Logic symbols]]. The numbering of these axioms varies from author to author. | ||
{|align=center style="width:80%;" | |||
|'''Note''': ''This article contains logic symbols. Without proper rendering support, you may see question marks, boxes, or other symbols instead of logic symbols.'' | |||
|} | |||
*1. <u>Axiom of extensionality</u>: If ''X'' and ''Y'' have the same elements, then ''X=Y'' | *1. <u>Axiom of extensionality</u>: If ''X'' and ''Y'' have the same elements, then ''X=Y'' | ||
::∀x∀y[∀z(z∈x ≡ z∈y) → x=y] | ::∀x∀y[∀z(z∈x ≡ z∈y) → x=y] | ||
Line 23: | Line 26: | ||
::∀x[x≠∅ → ∃y(y∈x & ∀z(z∈x → ¬(z∈y)))] | ::∀x[x≠∅ → ∃y(y∈x & ∀z(z∈x → ¬(z∈y)))] | ||
If to these is added the axiom of choice, the theory is designated as the ZFC theory: | If to these is added the axiom of choice, the theory is designated as the ZFC theory:<ref name=Bell/> | ||
*9. <u>Axiom of choice</u>: Every family of nonempty sets has a choice function | *9. <u>Axiom of choice</u>: Every family of nonempty sets has a choice function | ||
Line 31: | Line 34: | ||
==References== | ==References== | ||
{{Reflist|refs= | {{Reflist|refs= | ||
<ref name=Bell> | |||
{{cite web |url=http://plato.stanford.edu/archives/spr2009/entries/axiom-choice |title=The Axiom of Choice |author=Bell, John L. |work=The Stanford Encyclopedia of Philosophy |editor=Edward N. Zalta, editor |date=Spring 2009 Edition}} | |||
</ref> | |||
<ref name=Jech> | <ref name=Jech> | ||
Line 39: | Line 46: | ||
}} | }} | ||
[[Category:Suggestion Bot Tag]] |
Latest revision as of 12:00, 10 November 2024
The Zermelo-Fraenkel axioms form one of several possible formulations of axiomatic set theory.
The axioms
There are eight Zermelo-Fraenkel (ZF) axioms;[1] for the meaning of the symbols, see Logic symbols. The numbering of these axioms varies from author to author.
Note: This article contains logic symbols. Without proper rendering support, you may see question marks, boxes, or other symbols instead of logic symbols. |
- 1. Axiom of extensionality: If X and Y have the same elements, then X=Y
- ∀x∀y[∀z(z∈x ≡ z∈y) → x=y]
- 2. Axiom of pairing: For any a and b there exists a set {a, b} that contains exactly a and b
- ∀x∀y∃z∀w(w∈z ≡ w=x ∨ w=y)
- 3. Axiom schema of separation: If φ is a property with parameter p, then for any X and p there exists a set Y that contains all those elements u∈X that have the property φ; that is, the set Y={u∈X | φ(u, p)}
- ∀u1…∀uk[∀w∃v∀r(r∈v ≡ r∈w & ψx,û[r,û])]
- 4. Axiom of union: For any set X there exists a set Y = ∪ X, the union of all elements of X
- ∀x∃y∀z[z∈y ≡ ∃w(w∈x & z∈w)]
- 5. Axiom of power set: For any X there exists a set Y=P(X), the set of all subsets of X
- ∀x∃y∀z[z∈y ≡ ∀w(w∈z → w∈x)]
- 6. Axiom of infinity: There exists an infinite set
- ∃x[∅∈x & ∀y(y∈x → ∪{y,{y}}∈x)]
- 7. Axiom schema of replacement: If f is a function, then for any X there exists a set Y, denoted F(X) such that F(X)={f(x) | x∈X}
- ∀u1…∀uk[∀x∃!yφ(x,y,û) →
- ∀w∃v∀r(r∈v ≡ ∃s(s∈w & φx,y,û[s,r,û]))]
- ∀u1…∀uk[∀x∃!yφ(x,y,û) →
- 8. Axiom of regularity: Every nonempty set has an ∈-minimal element
- ∀x[x≠∅ → ∃y(y∈x & ∀z(z∈x → ¬(z∈y)))]
If to these is added the axiom of choice, the theory is designated as the ZFC theory:[2]
- 9. Axiom of choice: Every family of nonempty sets has a choice function
For further discussion of these axioms, see the bibliography and the linked articles.
References
- ↑ Thomas J Jech (1978). Set theory. Academic Press. ISBN 0123819504.
- ↑ Bell, John L. (Spring 2009 Edition). Edward N. Zalta, editor:The Axiom of Choice. The Stanford Encyclopedia of Philosophy.