Taylor series: Difference between revisions
Jump to navigation
Jump to search
imported>Aleksander Stos m (→Inverse hyperbolic functions: Wgp) |
imported>Charles Blackham (formatting, begin trig) |
||
Line 12: | Line 12: | ||
===Exponential & Logarithmic functions=== | ===Exponential & Logarithmic functions=== | ||
:<math> | :<math> | ||
e^x=1+x+\frac{x^2 | e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^r}{r!}+\cdots \qquad \forall x | ||
</math><br/><br/> | </math><br/><br/> | ||
:<math> | :<math> | ||
ln(1+x)=x-\frac{x^2 | ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots+(-1)^{r+1}\frac{x^r}{r}+\cdots \qquad (-1 < x \le 1) | ||
</math> | </math> | ||
===Trigonometric functions=== | ===Trigonometric functions=== | ||
:<math> | |||
\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}+\cdots+(-1)^{r}\frac{x^{2r+1}}{(2r+1)!}+\cdots \qquad \forall x | |||
</math><br/><br/> | |||
:<math> | |||
\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots+(-1)^{r}\frac{x^{2r}}{(2r)!}+\cdots \qquad \forall x | |||
</math><br/><br/> | |||
===Inverse trigonometric functions=== | ===Inverse trigonometric functions=== | ||
===Hyperbolic functions=== | ===Hyperbolic functions=== |
Revision as of 11:35, 26 April 2007
Taylor series are an infinite sum of polynomial terms to approximate a function in the region about a certain point . This is only possible is the function is behaving analytically in this neighbourhood. Such series about the point are known as Maclaurin series, after Scottish mathematician Colin Maclaurin. They work by ensuring that the approximate series matches the n^th derivative of the function being approximated when it is approximated by a polynomial of degree n.
Proof
See Taylor's theorem