Clebsch-Gordan coefficients: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
imported>Paul Wormer
(→‎Explicit expression: Added explicit expression for CG)
Line 191: Line 191:


==Explicit expression==
==Explicit expression==
For an explicit expression of the Clebsch-Gordan coefficients
The first derivation of an algebraic formula for CG coefficients was given by Wigner in his famous 1931 book. The following expression for the CG coefficients is due to Van der
and tables with numerical values see
Waerden and is the most symmetric one of the various existing forms, see, e.g., Biedenharn and Louck (1981) for a derivation,
[[table of Clebsch-Gordan coefficients]].
:<math>
\langle jm | j_1 m_1 ;j_2 m_2 \rangle  = \delta_{m,m_1+m_2}
                  \Delta (j_1 ,j_2 ,j) 
</math>
 
:<math>
\times \sum_t (-1)^t
{\textstyle \frac{
\left[(2j+1) (j_1 +m_1 )! (j_1 -m_1)! (j_2 +m_2 )! (j_2 -m_2 )! (j+m)!
      (j-m)! \right]^{\frac{1}{2}}}{t! (j_1 +j_2 -j-t)! (j_1 -m_1 -t)! (j_2 +m_2 -t)!
      (j-j_2 +m_1 +t)!  (j-j_1 -m_2 +t)!} }
</math>
where
:<math>
\Delta (j_1 ,j_2 ,j) \equiv \left[ \frac{
(j_1 +j_2 -j)! (j_1 -j_2 +j)! (-j_1 +j_2 +j)!}
{ (j_1 +j_2 +j+1)!}\right]^{{\frac{1}{2}}},
</math>
and the sum runs over all values of ''t'' which do not lead to
negative factorials.


==Orthogonality relations==
==Orthogonality relations==

Revision as of 06:48, 20 August 2007

In quantum mechanics, the Clebsch-Gordan coefficients (CG coefficients) are sets of numbers that arise in angular momentum coupling.

In mathematics, the CG coefficients appear in group representation theory, particularly of compact Lie groups. They arise in the explicit direct sum decomposition of the outer product of two irreducible representations (irreps) of a group G. In general the outer product representation (rep)—which is carried by a tensor product space—is reducible under G. Decomposition of the outer product rep into irreps of G requires a basis transformation of the tensor product space. The CG coefficients are the elements of the matrix of this basis transformation. In physics it is common to consider only orthonormal bases of the vector spaces involved, and then CG coefficients constitute a unitary matrix.

The name derives from the German mathematicians Alfred Clebsch (1833-1872) and Paul Gordan (1837-1912), who encountered an equivalent problem in invariant theory.

The formulas below use Dirac's bra-ket notation, i.e., the quantity stands for a positive definite inner product between the elements ψ and φ of the same complex inner product space. We follow the physical convention , where is the complex conjugate of the complex number c.

Clebsch-Gordan coefficients

Although Clebsch-Gordan coefficients can be defined for arbitrary groups, we restrict our attention in this article to the groups associated with space and spin angular momentum, namely the groups SO(3) and SU(2). In that case CG coefficients can be defined as the expansion coefficients of total angular momentum eigenstates in an uncoupled tensor product basis. Below, this definition is made precise by defining angular momentum operators, angular momentum eigenstates, and tensor products of these states.

From the formal definition recursion relations for the Clebsch-Gordan coefficients can be found. In order to settle the numerical values for the coefficients, a phase convention must be adopted. Below the Condon and Shortley phase convention is chosen.

Angular momentum operators

Angular momentum operators are Hermitian operators j1, j2, and j3,that satisfy the commutation relations

where is the Levi-Civita symbol. Together the three components define a vector operator . The square of the length of is defined as

We also define raising and lowering operators

Angular momentum states

It can be shown from the above definitions that commutes with and

When two Hermitian operators commute a common set of eigenfunctions exists. Conventionally and are chosen. From the commutation relations the possible eigenvalues can be found. The result is

The raising and lowering operators change the value of

with

A (complex) phase factor could be included in the definition of The choice made here is in agreement with the Condon and Shortley phase conventions. The angular momentum states must be orthogonal (because their eigenvalues with respect to a Hermitian operator are distinct) and they are assumed to be normalized

Tensor product space

Let be the dimensional vector space spanned by the states

and the dimensional vector space spanned by

The tensor product of these spaces, , has a dimensional uncoupled basis

Angular momentum operators acting on can be defined by

and

Total angular momentum operators are defined by

The total angular momentum operators satisfy the required commutation relations

and hence total angular momentum eigenstates exist

It can be derived [see, e.g., Messiah (1981) pp. 556-558] that must satisfy the triangular condition

The total number of total angular momentum eigenstates is equal to the dimension of

The total angular momentum states form an orthonormal basis of

Formal definition of Clebsch-Gordan coefficients

The total angular momentum states can be expanded in the uncoupled basis

The expansion coefficients are called Clebsch-Gordan coefficients.

Applying the operator

to both sides of the defining equation shows that the Clebsch-Gordan coefficients can only be nonzero when

Recursion relations

Applying the total angular momentum raising and lowering operators

to the left hand side of the defining equation gives

Applying the same operators to the right hand side gives

Combining these results gives recursion relations for the Clebsch-Gordan coefficients

Taking the upper sign with gives

In the Condon and Shortley phase convention the coefficient is taken real and positive. With the last equation all other Clebsch-Gordan coefficients can be found. The normalization is fixed by the requirement that the sum of the squares, which corresponds to the norm of the state must be one.

The lower sign in the recursion relation can be used to find all the Clebsch-Gordan coefficients with . Repeated use of that equation gives all coefficients.

This procedure to find the Clebsch-Gordan coefficients shows that they are all real (in the Condon and Shortley phase convention).

Explicit expression

The first derivation of an algebraic formula for CG coefficients was given by Wigner in his famous 1931 book. The following expression for the CG coefficients is due to Van der Waerden and is the most symmetric one of the various existing forms, see, e.g., Biedenharn and Louck (1981) for a derivation,

where

and the sum runs over all values of t which do not lead to negative factorials.

Orthogonality relations

These are most clearly written down by introducing the alternative notation

The first orthogonality relation is

and the second

Special cases

For the Clebsch-Gordan coefficients are given by

For and we have

Symmetry properties

Relation to 3-jm symbols

Clebsch-Gordan coefficients are related to 3-jm symbols which have more convenient symmetry relations.

See also

External links

References