Almost sure convergence: Difference between revisions
imported>Jitse Niesen (move parts to subpages) |
mNo edit summary |
||
Line 21: | Line 21: | ||
</math>. | </math>. | ||
This is an example of the [[strong law of large numbers]]. | This is an example of the [[strong law of large numbers]].[[Category:Suggestion Bot Tag]] |
Latest revision as of 06:00, 9 July 2024
Almost sure convergence is one of the four main modes of stochastic convergence. It may be viewed as a notion of convergence for random variables that is similar to, but not the same as, the notion of pointwise convergence for real functions.
Definition
In this section, a formal definition of almost sure convergence will be given for complex vector-valued random variables, but it should be noted that a more general definition can also be given for random variables that take on values on more abstract topological spaces. To this end, let be a probability space (in particular, ) is a measurable space). A (-valued) random variable is defined to be any measurable function , where is the sigma algebra of Borel sets of . A formal definition of almost sure convergence can be stated as follows:
A sequence of random variables is said to converge almost surely to a random variable if for all , where is some measurable set satisfying . An equivalent definition is that the sequence converges almost surely to if for all , where is some measurable set with . This convergence is often expressed as:
or
.
Important cases of almost sure convergence
If we flip a coin n times and record the percentage of times it comes up heads, the result will almost surely approach 50% as .
This is an example of the strong law of large numbers.