Talk:Hormesis: Difference between revisions
imported>Howard C. Berkowitz (→Hoping this is a reasonable approach: new section) |
imported>Howard C. Berkowitz |
||
Line 5: | Line 5: | ||
== Hoping this is a reasonable approach == | == Hoping this is a reasonable approach == | ||
One of the first thing that hormesis brings to mind is type-0 and type-1 pharmacokinetics, especially drug (or toxin) clearance. Obviously simplified, zero-order kinetics has a basic model that the excretion process has infinite capacity, while first-order kinetics has a saturation point. | One of the first thing that hormesis brings to mind is type-0 and type-1 pharmacokinetics, especially drug (or toxin) clearance. Obviously simplified, zero-order kinetics has a basic model that the excretion process has infinite capacity, while first-order kinetics has a saturation point. More precisely, zero-order kinetics asssume a constant absolute rate of clearance, while first-order clearance assumes a constant fraction of the total body concentraion over time. | ||
Such effects are at the high-end range of dose-effect mechanisms. | Such effects are at the high-end range of dose-effect mechanisms. |
Revision as of 12:00, 1 October 2008
Starting article on "hormesis"
Encouraging collaboration.
Hoping this is a reasonable approach
One of the first thing that hormesis brings to mind is type-0 and type-1 pharmacokinetics, especially drug (or toxin) clearance. Obviously simplified, zero-order kinetics has a basic model that the excretion process has infinite capacity, while first-order kinetics has a saturation point. More precisely, zero-order kinetics asssume a constant absolute rate of clearance, while first-order clearance assumes a constant fraction of the total body concentraion over time.
Such effects are at the high-end range of dose-effect mechanisms.
At a low end -- thinking of infection rather than drugs -- in biohazard mitigation and biological warfare work, there is a well-established "minimum infective concentration" (often expressed as the 50th percentile). Tularemia, for example, can establish disease with only a few cells, where more dangerous agents require a considerably larger concenntration.
Howard C. Berkowitz 12:32, 1 October 2008 (CDT)
- Article with Definition
- Developing Articles
- Nonstub Articles
- Internal Articles
- Health Sciences Developing Articles
- Health Sciences Nonstub Articles
- Health Sciences Internal Articles
- Biology Developing Articles
- Biology Nonstub Articles
- Biology Internal Articles
- Chemistry Developing Articles
- Chemistry Nonstub Articles
- Chemistry Internal Articles
- Health Sciences Underlinked Articles
- Underlinked Articles
- Biology Underlinked Articles
- Chemistry Underlinked Articles