Geometric series: Difference between revisions
imported>Peter Schmitt m (→Regular down payments: formatting) |
imported>Peter Schmitt (→Power series: adapting S_n) |
||
Line 127: | Line 127: | ||
</math> | </math> | ||
The partial sums of the | === Partial sums === | ||
The partial sums of the series Σ''q''<sup>''k''</sup> are | |||
: <math> | : <math> | ||
\sum_{k=0}^{n-1} q^k = 1 + q + q^2 + \cdots + q^{n-1} | |||
= \begin{cases} | = \begin{cases} | ||
{\displaystyle \frac{1-q^n}{1-q}} &\hbox{for } q\ne 1 \\ | {\displaystyle \frac{1-q^n}{1-q}} &\hbox{for } q\ne 1 \\ | ||
Line 137: | Line 139: | ||
because | because | ||
: <math> (1-q)(1 + q + q^2 + \cdots + q^{n-1}) = 1-q^n </math> | : <math> (1-q)(1 + q + q^2 + \cdots + q^{n-1}) = 1-q^n </math> | ||
Thus | |||
: <math> S_n = \sum_{k=1}^n a_k = a\frac{1-q^n}{1-q} \text{ for } q \ne 1 \text{ and } S_n = an \text{ for } q=1 </math> | |||
=== Limit === | |||
Since | Since | ||
: <math> \lim_{n\to\infty} {1-q^n \over 1-q } = {1-\lim_{n\to\infty}q^n \over 1-q } \quad (q\ne1)</math> | : <math> \lim_{n\to\infty} {1-q^n \over 1-q } = {1-\lim_{n\to\infty}q^n \over 1-q } \quad (q\ne1)</math> |
Revision as of 18:43, 20 January 2010
A geometric series is a series associated with a geometric sequence, i.e., the ratio (or quotient) q of two consecutive terms is the same for each pair.
Thus, every geometric series has the form
where the quotient (ratio) of the (n+1)th and the nth term is
The sum of the first n terms of a geometric sequence is called the n-th partial sum (of the series); its formula is given below (Sn).
An infinite geometric series (i.e., a series with an infinite number of terms) converges if and only if |q|<1, in which case its sum is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \over 1-q } , where a is the first term of the series.
In finance, since compound interest generates a geometric sequence, regular payments together with compound interest lead to a geometric series.
Remark
Since every finite geometric sequence is the initial segment of a uniquely determined infinite geometric sequence every finite geometric series is the initial segment of a corresponding infinite geometric series. Therefore, while in elementary mathematics the difference between "finite" and "infinite" may be stressed, in more advanced mathematical texts "geometrical series" usually refers to the infinite series.
Examples
Positive ratio | Negative ratio | |
---|---|---|
The series
and corresponding sequence of partial sums is a geometric series with quotient and first term and therefore its sum is |
The series
and corresponding sequence of partial sums is a geometric series with quotient and first term and therefore its sum is |
The sum of the first 5 terms — the partial sum S5 (see the formula derived below) — is for q = 1/3
and for q = −1/3
Application in finance
When regular payments are combined with compound interest this generates a geometric series:
Regular deposits
If, for n time periods, a sum P is deposited at an interest rate of p percent, then — after the n-th period —
the first payment has increased to
the second to
etc., and the last one
Thus the cumulated sum
is the n-th partial sum of a geometric series.
Regular down payments
If a loan L is to be payed off by n regular payments P, the total payment nP has to cover both the loan L and the accumulated interest I.
The interest for the payment at the end of the first time period is ,
for the payment after two time periods it is ,
etc., and for the last payment after n time periods the interest is .
Thus the accumulated interest
is the n-th partial sum of a geometric series. (From this equation, P can easily be calculated.)
Power series
By definition, a geometric series
can be written as
where
Partial sums
The partial sums of the series Σqk are
because
Thus
Limit
Since
it is
Summary: Convergence behaviour of the geometric series
The geometric series
- converges (more precisely: converges absolutely) for |q|<1 with the sum
- and diverges for |q| ≥ 1.
- For real q:
- For q ≥ 1 the limit is +∞ or −∞ depending on the sign of a.
- For q = −1 the series alternates between a and 0.
- For q < −1 the sign of partial sums alternates, the limit of their absolute values is ∞, but no infinite limit exists.
- For complex q:
- For |q| = 1 and q ≠ 1 (i.e., q = −1 or non-real complex) the partial sums Sn are bounded but not convergent.
- For |q| > 1 and q non-real complex the partial sums oscillate, the limit of their absolute values is ∞, but no infinite limit exists.