Kronecker delta: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(new entry, just a stub)
 
imported>Richard Pinch
m (typo)
Line 1: Line 1:
In [[algebra]], the '''Kronecker delta''' is a notation <math>\delta_{ij}</math> for a quantity depending on two subscripts ''i'' and ''j'' which is equal to one when ''i'' and ''j'' are equal, and zero then they are unequal.
In [[algebra]], the '''Kronecker delta''' is a notation <math>\delta_{ij}</math> for a quantity depending on two subscripts ''i'' and ''j'' which is equal to one when ''i'' and ''j'' are equal and zero when they are unequal.


If the subscripts are taken to vary from 1 to ''n'' then δ gives the entries of the ''n''-by-''n'' [[identity matrix]].  The invariance of this matrix under [[orthogonal matrix|orthogonal]] change of coordinate makes δ a rank two [[tensor]].
If the subscripts are taken to vary from 1 to ''n'' then δ gives the entries of the ''n''-by-''n'' [[identity matrix]].  The invariance of this matrix under [[orthogonal matrix|orthogonal]] change of coordinate makes δ a rank two [[tensor]].

Revision as of 11:19, 6 December 2008

In algebra, the Kronecker delta is a notation for a quantity depending on two subscripts i and j which is equal to one when i and j are equal and zero when they are unequal.

If the subscripts are taken to vary from 1 to n then δ gives the entries of the n-by-n identity matrix. The invariance of this matrix under orthogonal change of coordinate makes δ a rank two tensor.