Associated Legendre function/Catalogs: Difference between revisions
Jump to navigation
Jump to search
imported>Paul Wormer (New page: {{subpages}} The associated Legendre functions through ''l'' = 6 are: :<math> \begin{align} P_0^0(x) &= 1 \\ \\ P_1^0(x) &= x \\ P_1^1(x) & = (1-x^2)^{1/2} \\ \\ P_2^0(x) &= \tfrac{1}{2}...) |
imported>Paul Wormer No edit summary |
||
Line 19: | Line 19: | ||
\\ | \\ | ||
P_4^0(x) &= \tfrac{1}{8}(35x^4- 30x^2 + 3)\\ | P_4^0(x) &= \tfrac{1}{8}(35x^4- 30x^2 + 3)\\ | ||
P_4^1(x) &= \tfrac{1}{2}(1-x^2)^{1/2} (35x^3 - | P_4^1(x) &= \tfrac{1}{2}(1-x^2)^{1/2} (35x^3 - 15x) \\ | ||
P_4^2(x) &= \tfrac{1}{2}(1-x^2)(105x^2 -15) \\ | P_4^2(x) &= \tfrac{1}{2}(1-x^2)(105x^2 -15) \\ | ||
P_4^3(x) &= 105 (1-x^2)^{3/2} x \\ | P_4^3(x) &= 105 (1-x^2)^{3/2} x \\ | ||
Line 32: | Line 32: | ||
\\ | \\ | ||
P_6^0(x) &= \tfrac{1}{16}(231x^6- 315x^4 + 105x^2 -5)\\ | P_6^0(x) &= \tfrac{1}{16}(231x^6- 315x^4 + 105x^2 -5)\\ | ||
P_6^1(x) &= \tfrac{1}{8}(1-x^2)^{1/2} (693x^5 - 630x^3 + | P_6^1(x) &= \tfrac{1}{8}(1-x^2)^{1/2} (693x^5 - 630x^3 + 105x) \\ | ||
P_6^2(x) &= \tfrac{1}{8}(1-x^2)(3465 x^4 - 1890 x^2 +105) \\ | P_6^2(x) &= \tfrac{1}{8}(1-x^2)(3465 x^4 - 1890 x^2 +105) \\ | ||
P_6^3(x) &= \tfrac{1}{2} (1-x^2)^{3/2} (3465x^3-945x) \\ | P_6^3(x) &= \tfrac{1}{2} (1-x^2)^{3/2} (3465x^3-945x) \\ |
Latest revision as of 06:56, 10 September 2009
The associated Legendre functions through l = 6 are: