Bessel functions: Difference between revisions
imported>Dmitrii Kouznetsov No edit summary |
imported>Dmitrii Kouznetsov (add complex map of J_0) |
||
Line 4: | Line 4: | ||
Explicit plots of the <math>J_0</math> and <math>J_1</math>. | Explicit plots of the <math>J_0</math> and <math>J_1</math>. | ||
</ref>]] | </ref>]] | ||
[[File:Besselj1mapT080.png|400px|thumb|[[Complex map]] of <math>J_1</math> by | |||
<ref name="torimapj0"> | |||
http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj1map1T080.png | |||
Complex map of the Bessel function BesselJ1. | |||
</ref>; | |||
<math>u+\mathrm i v = J_1(x+\mathrm i y)</math> | |||
]]. | |||
'''Bessel functions''' are solutions of the Bessel differential equation:<ref>{{cite book|author=Frank Bowman|title=Introduction to Bessel Functions|edition=1st Edition|publisher=Dover Publications|year=1958|id=ISBN 0-486-60462-4}}</ref><ref>{{cite book|author=George Neville Watson|title=A Treatise on the Theory of Bessel Functions|edition=2nd Edition|publisher=Cambridge University Press|year=1966|id=}}</ref><ref>[http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html Bessel Function of the First Kind] Eric W. Weisstein, From the website of "MathWorld--A Wolfram Web Resource".</ref> | '''Bessel functions''' are solutions of the Bessel differential equation:<ref>{{cite book|author=Frank Bowman|title=Introduction to Bessel Functions|edition=1st Edition|publisher=Dover Publications|year=1958|id=ISBN 0-486-60462-4}}</ref><ref>{{cite book|author=George Neville Watson|title=A Treatise on the Theory of Bessel Functions|edition=2nd Edition|publisher=Cambridge University Press|year=1966|id=}}</ref><ref>[http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html Bessel Function of the First Kind] Eric W. Weisstein, From the website of "MathWorld--A Wolfram Web Resource".</ref> | ||
Revision as of 06:58, 13 July 2012
.
Bessel functions are solutions of the Bessel differential equation:[3][4][5]
where α is a constant.
Because this is a second-order differential equation, it should have two linearly-independent solutions:
(i) Jα(x) and
(ii) Yα(x).
In addition, a linear combination of these solutions is also a solution:
(iii) Hα(x) = C1 Jα(x) + C2 Yα(x)
where C1 and C2 are constants.
These three kinds of solutions are called Bessel functions of the first kind, second kind, and third kind.
Properties
Many properties of functions $J$, $Y$ and $H$ are collected at the handbook by Abramowitz, Stegun [6].
Integral representations
Expansions at small argument
The series converges in the whole complex $z$ plane, but fails at negative integer values of . The postfix form of factorial is used above; .
Applications
Bessel functions arise in many applications. For example, Kepler’s Equation of Elliptical Motion, the vibrations of a membrane, and heat conduction, to name a few. In paraxial optics the Bessel functions are used to describe solutions with circular symmetry.
References
- ↑ http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj0j1plotT.png Explicit plots of the and .
- ↑ http://tori.ils.uec.ac.jp/TORI/index.php/File:Besselj1map1T080.png Complex map of the Bessel function BesselJ1.
- ↑ Frank Bowman (1958). Introduction to Bessel Functions, 1st Edition. Dover Publications. ISBN 0-486-60462-4.
- ↑ George Neville Watson (1966). A Treatise on the Theory of Bessel Functions, 2nd Edition. Cambridge University Press.
- ↑ Bessel Function of the First Kind Eric W. Weisstein, From the website of "MathWorld--A Wolfram Web Resource".
- ↑ http://people.math.sfu.ca/~cbm/aands/page_358.htm M. Abramowitz and I. A. Stegun. Handbook of mathematical functions.