Talk:Pi (mathematical constant): Difference between revisions
imported>Catherine Woodgold (→Algebraically independent?: Rewording is fine.) |
imported>Greg Martin (zeta(n) for n odd) |
||
Line 23: | Line 23: | ||
::That's what I thought. Thanks for rewording it. --[[User:Catherine Woodgold|Catherine Woodgold]] 20:27, 2 May 2007 (CDT) | ::That's what I thought. Thanks for rewording it. --[[User:Catherine Woodgold|Catherine Woodgold]] 20:27, 2 May 2007 (CDT) | ||
== zeta(n) for n odd == | |||
It's remarked in the current version that it "may seem probable" that zeta(n) is a rational multiple of pi^n when n>1 is odd; I don't feel this is correct. | |||
First off "may" should be "might". But more importantly, if zeta(3) were a rational multiple of pi^3 for example, then presumably the rational multiple wouldn't involve a ridiculously large numerator and denominator. I just did a quick computation (by computer) that verified, however, that zeta(3)/pi^3 doesn't equal any rational number whose numerator or denominator has less than 500 digits. I'm sure this sort of computation has been done before and to more precision. So I doubt many number theorists believe zeta(n)/pi^n is rational for n odd. - [[User:Greg Martin|Greg Martin]] 02:02, 3 May 2007 (CDT) |
Revision as of 01:02, 3 May 2007
Workgroup category or categories | Mathematics Workgroup [Categories OK] |
Article status | Developing article: beyond a stub, but incomplete |
Underlinked article? | Yes |
Basic cleanup done? | Yes |
Checklist last edited by | --AlekStos 09:53, 26 March 2007 (CDT) |
To learn how to fill out this checklist, please see CZ:The Article Checklist.
[Image:http://commons.wikimedia.org/wiki/Image:Pi-symbol.svg]
what's the policy on using wikimedia images/media?
--Chief Mike 04:24, 25 January 2007 (CST)
Algebraically independent?
It says "lthough π itself is transcendental, it is an open problem whether many other transcendental numbers are algebraically independent from π. " in "Relation to other constants". If this means that it's not known whether there exist many transcendental numbers which are algebraically independent from π, then it sounds wrong to me. Maybe it means that for many other known transcendental numbers, it is an open problem whether those numbers are algebraically independent from π. If so, it should be reworded to clarify. --Catherine Woodgold 17:32, 2 May 2007 (CDT)
- It can't be the first, by a simple countability argument. Greg Woodhouse 17:35, 2 May 2007 (CDT)
- That's what I thought. Thanks for rewording it. --Catherine Woodgold 20:27, 2 May 2007 (CDT)
zeta(n) for n odd
It's remarked in the current version that it "may seem probable" that zeta(n) is a rational multiple of pi^n when n>1 is odd; I don't feel this is correct.
First off "may" should be "might". But more importantly, if zeta(3) were a rational multiple of pi^3 for example, then presumably the rational multiple wouldn't involve a ridiculously large numerator and denominator. I just did a quick computation (by computer) that verified, however, that zeta(3)/pi^3 doesn't equal any rational number whose numerator or denominator has less than 500 digits. I'm sure this sort of computation has been done before and to more precision. So I doubt many number theorists believe zeta(n)/pi^n is rational for n odd. - Greg Martin 02:02, 3 May 2007 (CDT)
- Mathematics Category Check
- General Category Check
- Category Check
- Advanced Articles
- Nonstub Articles
- Internal Articles
- Mathematics Advanced Articles
- Mathematics Nonstub Articles
- Mathematics Internal Articles
- Developed Articles
- Mathematics Developed Articles
- Developing Articles
- Mathematics Developing Articles
- Stub Articles
- Mathematics Stub Articles
- External Articles
- Mathematics External Articles
- Mathematics Underlinked Articles
- Underlinked Articles
- Mathematics Cleanup
- General Cleanup
- Cleanup