Hyperelliptic curve: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David Lehavi
(added compactifications of the moduli)
imported>David Lehavi
(add material on plane model and references)
Line 7: Line 7:


=== The plane model ===
=== The plane model ===
[[Image:hyperelliptic_plane.png|200px|thumb|A plane model for a hyperelliptic curve of genus 3. Two Weierstrass points have non-real coordinates, and one is at infinity]]
[[Image:hyperelliptic_plane.png|200px|thumb|A plane model for a hyperelliptic curve of genus 3. Two Weierstrass points have non-real coordinates, and one is at infinity.]]
If the <math>2g+2</math> Bracnh points of a hyperelliptic double cover <math>C\to\mathbb{P}^1</math> are <math>w_1,\ldots w_{2g+2}</math> then C is [[birational]] to the plane curve <math>Nulls(y^2=(x-w_1)(x-w_2)\cdots(x-w_{2g+1})(x-w_{2g+2}))\subset\mathbb{A}^2</math>, where if one of the branch points is infinity, we omit the corresponding term in the product. The closure of this curve in the projective plane has a singularity on the line <math>\mathbb{P}^2\setminus\mathbb{A}^2</math>.
 
=== Curves of genus 2 ===
=== Curves of genus 2 ===
If the genus of <math>C</math> is 2, then the degree of the [[canonical class]] <math>K_C</math> is 2, and <math>h^0(K_C)=2</math>. Hence the [[canonical map]] is a double cover.
If the genus of <math>C</math> is 2, then the degree of the [[canonical class]] <math>K_C</math> is 2, and <math>h^0(K_C)=2</math>. Hence the [[canonical map]] is a double cover. The [[Jacobian variety]] of such a curve is an [[Abelian surface]].


== The canonical system ==
== The canonical system ==
Line 28: Line 30:
=== Compactifications of the moduli ===
=== Compactifications of the moduli ===
There are two standard "natural" compactifications of the moduli of <math>n</math> distinct points on <math>\mathbb{P}^1</math>. One is the [[binary forms]] compactification <math>\overline{\mathcal{B}}_n</math>: the [[GIT quotient]] of homogenous polynomials of degree <math>n</math> in two variables by the group <math>PGL_2</math> acting on the linear span of the variables. The second compactification is the [[Deligne-Mumford compactification]] of the [[moduli of pointed curves]] <math>\overline{\mathcal{M}}_{0,n}</math>. For the case <math>n=2g+2</math> Avritzer and Lange constructed a surjective morphism <math>\overline{\mathcal{M}}_{0,2g+2}\to\overline{\mathcal{B}}_{2g+2}</math>, thus relating these compactifications of the space of hyperelliptic case. Finally, the closure of the locus of hyperelliptic curves in the moduli [[stack]] <math>\overline{\mathcal{M}}_g</math> of curves of genus <math>g</math>, is a degree <math>1/2</math> cover of <math>\overline{\mathcal{M}}_{0,2g+2}</math>.
There are two standard "natural" compactifications of the moduli of <math>n</math> distinct points on <math>\mathbb{P}^1</math>. One is the [[binary forms]] compactification <math>\overline{\mathcal{B}}_n</math>: the [[GIT quotient]] of homogenous polynomials of degree <math>n</math> in two variables by the group <math>PGL_2</math> acting on the linear span of the variables. The second compactification is the [[Deligne-Mumford compactification]] of the [[moduli of pointed curves]] <math>\overline{\mathcal{M}}_{0,n}</math>. For the case <math>n=2g+2</math> Avritzer and Lange constructed a surjective morphism <math>\overline{\mathcal{M}}_{0,2g+2}\to\overline{\mathcal{B}}_{2g+2}</math>, thus relating these compactifications of the space of hyperelliptic case. Finally, the closure of the locus of hyperelliptic curves in the moduli [[stack]] <math>\overline{\mathcal{M}}_g</math> of curves of genus <math>g</math>, is a degree <math>1/2</math> cover of <math>\overline{\mathcal{M}}_{0,2g+2}</math>.
=== References ===
* ACGH
* Avritzer and Lange
* Dolgachev "Invariant theory"
* Harris and Morison "Moduli of curves"


[[Category:Mathematics Workgroup]]
[[Category:Mathematics Workgroup]]
[[Category:CZ Live]]
[[Category:CZ Live]]

Revision as of 23:38, 26 February 2007

In algebraic geometry a hyperelliptic curve is an algebraic curve of genus greater then 1, which admits a double cover . If such a double cover exists it is unique, and it is called the "hyperelliptic double cover". The involution induced on the curve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} by the interchanging between the two "sheets" of the double cover is called the "hyperelliptic involution". The divisor class of a fiber of the hyperelliptic double cover is called the "hyperelliptic class".

Weierstrass points

By the Riemann-Hurwitz formula the hyperelliptic double cover has exactly Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2g+2} branch points. For each branch point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0(2p)= 2} . Hence these points are all Weierstrass points. Moreover, we see that for each of these points Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0((2(k+1))p)\geq h^0(2kp)+1} , and thus the Weierstrass weight of each of these points is at least . However, by the second part of the Weierstrass gap theorem, the total weight of Weierstrass points is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(g^2-1)} , and thus the Weierstrass points of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} are exactly the branch points of the hyperelliptic double cover.

Given a set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2g+2} distinct points on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}^1} , there is a unique double cover of whose branch divisor is the set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} . From an algebro-geometric point of view this on can construct the curve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} by taking the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Proj} of the sheaf whose sections over an open subset Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U\subset\mathbb{P}^1} satisfy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g^2\in O_U(B)} .

The plane model

A plane model for a hyperelliptic curve of genus 3. Two Weierstrass points have non-real coordinates, and one is at infinity.

If the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2g+2} Bracnh points of a hyperelliptic double cover are Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_1,\ldots w_{2g+2}} then C is birational to the plane curve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Nulls(y^2=(x-w_1)(x-w_2)\cdots(x-w_{2g+1})(x-w_{2g+2}))\subset\mathbb{A}^2} , where if one of the branch points is infinity, we omit the corresponding term in the product. The closure of this curve in the projective plane has a singularity on the line Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}^2\setminus\mathbb{A}^2} .

Curves of genus 2

If the genus of is 2, then the degree of the canonical class Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_C} is 2, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0(K_C)=2} . Hence the canonical map is a double cover. The Jacobian variety of such a curve is an Abelian surface.

The canonical system

If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is a rational point on a hyperelliptic curve, then for all we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0((2(k+1))p)\geq h^0(2kp)+1} . Hence we must have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0((2g-2)p)\geq g} . However, by Riemann-Roch this implies that the divisor Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2g-2)p} is rationally equivalent to the canonical class . Hence the canonical class of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g-1} times the hyperelliptic class of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} , and the canonical image of is a rational curve of degree Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g-1} .

Level 2 structure

If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} is a set of at most Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g+1} Weierstrass points of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} such that is even, then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_S:=[S]+\frac{\#S-(g+1)}{2}H_C} is a theta characteritic of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} ; i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2D_S\sim K_C} in the Picard group of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} . Moreover, it can be shown that , and if there are two such sets Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S\neq S'} , then either or is the set of all Weirstrass points on .

If we count each set together with its complementary set in the set of Weierstrass points (and then divide by 2) then the combinatorial description above tells us that any parition of the set of Weierstrass points to two sets such that the difference between the cardinalities is divisible by 4 induces a theta characteristic. Hence we constructed . This combinatorial sum is which is the number of theta characteristic on a curve of genus . Hence our description exhausts all the theta characteristics.

a family of bitangents to canonical curves of genus 3 degenerate to a line connecting images of two Weierstrass points of a canonical image of a hyperelliptic curve of genus 3
  • In genus 2, there are 6 Weierstrass points. Each of them is an odd theta characteristics. There are three-tuples of distinct Weierstrass points, and hence there are Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 20/2=10} odd theta characteristic, as expected. It is interesting to understand the geometrical meaning of pairs of Weierstrass points: if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_1,p_2} are two distinct Weierstrass points on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_1+p_2-H_C} is a 2-torsion point on the Jacobian of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} , in this way we can express all the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^4-1=15=binom(6,2)} non trivial 2-torsion points on this Jacobian. Moreover, if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_3+p_4-H_C} is another (and different) two torsion point, then the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Weil pairing} between the two 2-torsion points is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{p_1,p_2\}\cap\{p_3,p_4\}} .
  • in genus 3, there are 8 Weierstrass points. The even theta characteristics are given by the empty set, and by partitions of these 8 points to two distinct sets - hence we get Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+binom(8,4)/2=36} even theta characteristics. the odd theta characteristics are given by the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle binom(8,2)=28} pairs of Weierstrass points. The canonical map in this case maps the curve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} to a double cover of plane conic. Consider a family of canonically embedded genus 3 curves with parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Nulls(Q^2+tF)} , where we identify the double conic Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q^2} with the canonical image of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} , where the Weierstrass points the intersection points of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Nulls(Q)\cap Nulls(F)} . Then it can be shown that the "limit" of the bitangents of the curves in the family (which are the odd theta characteritics) are the lines connecting pairs of images of Weierstrass points on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} .

Moduli of hyperelliptic curves

Since for any set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2g+2} on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}^1} there is a unique double cover Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C\to\mathbb{P}^1} branch divisor Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} , the course moduli space of hyperelliptic curves of genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} is isomorphic to the moduli of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2g+2} points on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}^1} , up to projective transformations. However, as there are more then three points in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} , there is a finite non-empty subset of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Aut(\mathbb{P}^1)=PGL_2} that send three of the points in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0,1,\infty} . Thus, the moduli of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2g+2} distinct points on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}^1} up to projective transformations is a finite quotient of the space of distincit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2g-1} on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}^1\setminus\{0,1,\infty\}} . Specifically this space is an irreducible affine scheme of dimension Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2g-1} .

Compactifications of the moduli

There are two standard "natural" compactifications of the moduli of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} distinct points on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}^1} . One is the binary forms compactification Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{B}}_n} : the GIT quotient of homogenous polynomials of degree Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} in two variables by the group Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle PGL_2} acting on the linear span of the variables. The second compactification is the Deligne-Mumford compactification of the moduli of pointed curves Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{M}}_{0,n}} . For the case Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=2g+2} Avritzer and Lange constructed a surjective morphism Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{M}}_{0,2g+2}\to\overline{\mathcal{B}}_{2g+2}} , thus relating these compactifications of the space of hyperelliptic case. Finally, the closure of the locus of hyperelliptic curves in the moduli stack Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{M}}_g} of curves of genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} , is a degree Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1/2} cover of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{M}}_{0,2g+2}} .

References

  • ACGH
  • Avritzer and Lange
  • Dolgachev "Invariant theory"
  • Harris and Morison "Moduli of curves"