Pauli spin matrices: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Michael Hardy
mNo edit summary
imported>Michael Hardy
m (spacing)
Line 4: Line 4:
   0 & 1 \\
   0 & 1 \\
   1 & 0  
   1 & 0  
\end{pmatrix},  
\end{pmatrix}, \quad
\sigma_y=\begin{pmatrix}
\sigma_y=\begin{pmatrix}
   0 & -\mathit{i} \\
   0 & -\mathit{i} \\
   \mathit{i} & 0  
   \mathit{i} & 0  
\end{pmatrix},  
\end{pmatrix}, \quad
\sigma_z=\begin{pmatrix}
\sigma_z=\begin{pmatrix}
   1 & 0 \\
   1 & 0 \\

Revision as of 20:51, 22 August 2007

The Pauli spin matrices are a set of unitary Hermitian matrices which form an orthogonal basis (along with the identity matrix) for the real Hilbert space of 2 × 2 Hermitian matrices and for the complex Hilbert spaces of all 2 × 2 matrices. They are usually denoted:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_x=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y=\begin{pmatrix} 0 & -\mathit{i} \\ \mathit{i} & 0 \end{pmatrix}, \quad \sigma_z=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}

Algebraic properties

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_x^2=\sigma_y^2=\sigma_z^2=I}

For i = 1, 2, 3:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Tr}(\sigma_i)=0\,}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{eigenvalues}=\pm 1\,}

Commutation relations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_1\sigma_2 = i\sigma_3\,\!}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_3\sigma_1 = i\sigma_2\,\!}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_2\sigma_3 = i\sigma_1\,\!}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i\sigma_j = -\sigma_j\sigma_i\mbox{ for }i\ne j\,\!}

The Pauli matrices obey the following commutation and anticommutation relations:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{matrix} [\sigma_i, \sigma_j] &=& 2 i\,\varepsilon_{i j k}\,\sigma_k \\[1ex] \{\sigma_i, \sigma_j\} &=& 2 \delta_{i j} \cdot I \end{matrix}}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_{ijk}} is the Levi-Civita symbol, is the Kronecker delta, and I is the identity matrix.

The above two relations can be summarized as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i \sigma_j = \delta_{ij} \cdot I + i \varepsilon_{ijk} \sigma_k \,} .