Pauli spin matrices: Difference between revisions
imported>Michael Underwood (→Algebraic Properties: Put \mbox{} around the words 'det', 'Tr', and 'eigenvalues') |
imported>Michael Hardy No edit summary |
||
Line 14: | Line 14: | ||
==Algebraic Properties== | ==Algebraic Properties== | ||
<math>\sigma_x^2=\sigma_y^2=\sigma_z^2=I</math><br/> | |||
For i=1,2,3: | : <math>\sigma_x^2=\sigma_y^2=\sigma_z^2=I</math><br/> | ||
:<math>\mbox{det}(\sigma_i)=-1</math> | |||
:<math>\mbox{Tr}(\sigma_i)=0</math> | For ''i'' = 1, 2, 3: | ||
:<math>\mbox{det}(\sigma_i)=-1</math> | |||
:<math>\mbox{Tr}(\sigma_i)=0</math> | |||
:<math>\mbox{eigenvalues}=\pm 1</math> | :<math>\mbox{eigenvalues}=\pm 1</math> | ||
Revision as of 20:50, 22 August 2007
The Pauli spin matrices are a set of unitary Hermitian matrices which form an orthogonal basis (along with the identity matrix) for the real Hilbert space of 2x2 Hermitian matrices and for the complex Hilbert spaces of all 2x2 matrices. They are usually denoted:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_x=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y=\begin{pmatrix} 0 & -\mathit{i} \\ \mathit{i} & 0 \end{pmatrix}, \sigma_z=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}
Algebraic Properties
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_x^2=\sigma_y^2=\sigma_z^2=I}
For i = 1, 2, 3:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{det}(\sigma_i)=-1}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Tr}(\sigma_i)=0}
Commutation relations
The Pauli matrices obey the following commutation and anticommutation relations:
- where is the Levi-Civita symbol, is the Kronecker delta, and I is the identity matrix.
The above two relations can be summarized as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i \sigma_j = \delta_{ij} \cdot I + i \varepsilon_{ijk} \sigma_k \,} .