Taylor series: Difference between revisions
Jump to navigation
Jump to search
imported>Charles Blackham (Structure, gen form) |
imported>Charles Blackham (exp & ln) |
||
Line 7: | Line 7: | ||
===General formula=== | ===General formula=== | ||
:<math> | :<math> | ||
f(x) | f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+\cdots+\frac{f^{(r)}(a)}{r!}(x-a)^r+\cdots | ||
=f(a)+f'(a)(x-a)+\frac{f''(a)}{2}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+\cdots+\frac{f^{( | |||
</math> | </math> | ||
::<math>=\sum_{n=0}^{\infin} \frac{f^{(n)}(a)}{n!} (x-a)^{n}</math> | |||
===Exponential & Logarithmic functions=== | ===Exponential & Logarithmic functions=== | ||
:<math> | |||
e^x=1+x+\frac{x^2)}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^r}{r!}+\cdots \forall x | |||
</math><br/><br/> | |||
:<math> | |||
ln(1+x)=x-\frac{x^2)}{2}+\frac{x^3}{3}-\cdots+(-1)^{r+1}\frac{x^r}{r}+\cdots (-1 < x \le 1) | |||
</math> | |||
===Trigonometric functions=== | ===Trigonometric functions=== | ||
===Inverse trigonometric functions=== | |||
===Hyperbolic functions=== | ===Hyperbolic functions=== | ||
===Inverse hyperbolic functions=== | |||
[[Category:CZ Live]] | [[Category:CZ Live]] | ||
[[Category:Mathematics workgroup]] | [[Category:Mathematics workgroup]] |
Revision as of 07:26, 26 April 2007
Taylor series are an infinite sum of polynomial terms to approximate a function in the region about a certain point . This is only possible is the function is behaving analytically in this neighbourhood. Such series about the point are known as Maclaurin series, after Scottish mathematician Colin Maclaurin. They work by ensuring that the approximate series matches the n^th derivative of the function being approximated when it is approximated by a polynomial of degree n.
Proof
See Taylor's theorem