Topological space: Difference between revisions
imported>Hendra I. Nurdin (→Examples: Correction to example 1, added the empty set to O) |
imported>Hendra I. Nurdin (Inserted some topological notions) |
||
Line 27: | Line 27: | ||
2. Let <math>X=\mathbb{R}</math> as before. Let <math>O</math> be a collection of subsets of <math>\mathbb{R}</math> defined by the requirement that <math>A \in O </math> if and only if <math>A=\emptyset</math> or <math>A</math> contains all except at most a finite number of real numbers. Then it is straightforward to verify that <math>O</math> defined in this way has the three properties required to be a topology on <math>\mathbb{R}</math>. This topology is known as the <i>Zariski topology</i>. | 2. Let <math>X=\mathbb{R}</math> as before. Let <math>O</math> be a collection of subsets of <math>\mathbb{R}</math> defined by the requirement that <math>A \in O </math> if and only if <math>A=\emptyset</math> or <math>A</math> contains all except at most a finite number of real numbers. Then it is straightforward to verify that <math>O</math> defined in this way has the three properties required to be a topology on <math>\mathbb{R}</math>. This topology is known as the <i>Zariski topology</i>. | ||
== Some topological notions== | |||
This section introduces some important topological notions. Throughout, ''X'' will denote a topological space with the topology ''O''. | |||
; Partial list of topological notions | |||
; Neighbourhood : A subset ''N'' of ''X'' is a neighbourhood of a point <math>x \in X</math> if ''N'' contains an open set <math>U \in O</math> containing the point ''x'' | |||
; Limit point : A point <math>x \in X</math> is a limit point of a subset ''X'' of ''A'' if any open set in ''O'' containing ''x'' also contains a point <math>y \in A</math> with <math>y \notin x</math>. An equivalent definition is that <math>x \in X</math> is a limit point of ''A'' if every neighbourhood of ''x'' contains a point <math>y \in A</math> different from ''x''. | |||
; Open cover : A collection <math>\mathcal{U}</math> of open sets of ''X'' is said to be an open cover for ''X'' if each point <math>x \in X</math> belongs to at least one of the opens sets in <math>\mathcal{U}</math> | |||
; Path: A path <math>\gamma</math> is a [[continuous function]] <math>\gamma:[0,1]\rightarrow X</math>. The point <math>\gamma(0)</math> is said to be the '''starting point''' of <math>\gamma</math> and <math>\gamma(1)</math> is said to be the '''end point'''. A path joins its starting point to its end point | |||
== See also == | == See also == |
Revision as of 03:54, 15 September 2007
In mathematics, a topological space is an ordered pair where is a set and is a certain collection of subsets of called the open sets or the topology of . The topology of introduces a structure on the set which is useful for defining some important abstract notions such as the "closeness" of two elements of and convergence of sequences of elements of .
Formal definition
A topological space is an ordered pair where is a set and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} is a collection of subsets of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in O \Rightarrow A \subset X} ) with the following three properties:
1. and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \emptyset} (the empty set) are in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O}
2. The union of any number (countable or uncountable) of elements of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} is again in
3. The intersection of any finite number of elements of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} is again in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O}
Elements of the set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} are called open sets (of ).
Note that as shorthand a topological space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X,O)} is often simply written as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} once the particular topology on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} is understood.
Examples
1. Let where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} denotes the set of real numbers. The open interval ]a, b[ (where a < b) is the set of all numbers between a and b:
Then a topology Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} can be defined on to consist of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \emptyset} and all sets of the form:
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma} is any arbitrary index set, and and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_{\gamma}} are real numbers satisfying Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_\gamma < b_\gamma} for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma \in \Gamma } . This topology is precisely the familiar topology induced on by the Euclidean distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d(x,y)=|x-y|} and probably the most widely used in the applied sciences. However, in general one may define different inequivalent topologies on a particular set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} and in the next example another topology on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} , albeit a relatively obscure one, will be constructed.
2. Let as before. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} be a collection of subsets of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} defined by the requirement that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in O } if and only if or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} contains all except at most a finite number of real numbers. Then it is straightforward to verify that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} defined in this way has the three properties required to be a topology on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} . This topology is known as the Zariski topology.
Some topological notions
This section introduces some important topological notions. Throughout, X will denote a topological space with the topology O.
- Partial list of topological notions
- Neighbourhood
- A subset N of X is a neighbourhood of a point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in X} if N contains an open set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U \in O} containing the point x
- Limit point
- A point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in X} is a limit point of a subset X of A if any open set in O containing x also contains a point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y \in A} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y \notin x} . An equivalent definition is that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in X} is a limit point of A if every neighbourhood of x contains a point different from x.
- Open cover
- A collection of open sets of X is said to be an open cover for X if each point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in X} belongs to at least one of the opens sets in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{U}}
- Path
- A path Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} is a continuous function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma:[0,1]\rightarrow X} . The point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma(0)} is said to be the starting point of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma(1)} is said to be the end point. A path joins its starting point to its end point
See also
References
1. K. Yosida, Functional Analysis (6 ed.), ser. Classics in Mathematics, Berlin, Heidelberg, New York: Springer-Verlag, 1980
2. D. Wilkins, Lecture notes for Course 212 - Topology, Trinity College Dublin, URL: [1]