Topological space: Difference between revisions
imported>Hendra I. Nurdin (Added link to metric space) |
imported>Hendra I. Nurdin (→Examples: Correction to example 1, added the empty set to O) |
||
Line 20: | Line 20: | ||
<center><math> \mathopen{]} a,b \mathclose{[} = \{ y \in \mathbb{R} \mid a < y < b \}.</math></center> | <center><math> \mathopen{]} a,b \mathclose{[} = \{ y \in \mathbb{R} \mid a < y < b \}.</math></center> | ||
Then a topology <math>O</math> can be defined on <math>X=\mathbb{R}</math> to consist of all sets of the form: | Then a topology <math>O</math> can be defined on <math>X=\mathbb{R}</math> to consist of <math>\emptyset</math> and all sets of the form: | ||
<center><math>\bigcup_{\gamma \in \Gamma} \mathopen{]} a_\gamma, b_\gamma \mathclose{[} ,</math></center> | <center><math>\bigcup_{\gamma \in \Gamma} \mathopen{]} a_\gamma, b_\gamma \mathclose{[} ,</math></center> |
Revision as of 17:04, 3 September 2007
In mathematics, a topological space is an ordered pair where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} is a set and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} is a certain collection of subsets of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} called the open sets or the topology of . The topology of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} introduces a structure on the set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} which is useful for defining some important abstract notions such as the "closeness" of two elements of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} and convergence of sequences of elements of .
Formal definition
A topological space is an ordered pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X,O)} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} is a set and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} is a collection of subsets of (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in O \Rightarrow A \subset X} ) with the following three properties:
1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \emptyset} (the empty set) are in
2. The union of any number (countable or uncountable) of elements of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} is again in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O}
3. The intersection of any finite number of elements of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} is again in
Elements of the set are called open sets (of ).
Note that as shorthand a topological space is often simply written as once the particular topology on is understood.
Examples
1. Let where denotes the set of real numbers. The open interval ]a, b[ (where a < b) is the set of all numbers between a and b:
Then a topology can be defined on to consist of and all sets of the form:
where is any arbitrary index set, and and are real numbers satisfying for all . This topology is precisely the familiar topology induced on by the Euclidean distance and probably the most widely used in the applied sciences. However, in general one may define different inequivalent topologies on a particular set and in the next example another topology on , albeit a relatively obscure one, will be constructed.
2. Let as before. Let be a collection of subsets of defined by the requirement that if and only if or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} contains all except at most a finite number of real numbers. Then it is straightforward to verify that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O} defined in this way has the three properties required to be a topology on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} . This topology is known as the Zariski topology.
See also
References
1. K. Yosida, Functional Analysis (6 ed.), ser. Classics in Mathematics, Berlin, Heidelberg, New York: Springer-Verlag, 1980
2. D. Wilkins, Lecture notes for Course 212 - Topology, Trinity College Dublin, URL: [1]