Disjoint union: Difference between revisions
imported>Richard Pinch m (typo) |
imported>Richard Pinch (commutative and associative) |
||
Line 8: | Line 8: | ||
The disjoint union has a [[universal property]]: if there is a set ''Z'' with maps <math>f:X \rightarrow Z</math> and <math>g:Y \rightarrow Z</math>, then there is a map <math>h : X \amalg Y \rightarrow Z</math> such that the compositions <math>\mathrm{in}_1 \cdot h = f</math> and <math>\mathrm{in}_2 \cdot h = g</math>. | The disjoint union has a [[universal property]]: if there is a set ''Z'' with maps <math>f:X \rightarrow Z</math> and <math>g:Y \rightarrow Z</math>, then there is a map <math>h : X \amalg Y \rightarrow Z</math> such that the compositions <math>\mathrm{in}_1 \cdot h = f</math> and <math>\mathrm{in}_2 \cdot h = g</math>. | ||
The disjoint union is [[commutative]], in the sense that there is a natural bijection between <math>X \amalg Y</math> and <math>Y \amalg X</math>; it is [[associative]] again in the sense that there is a natural bijection between <math>X \amalg (Y \amalg Z)</math> and <math>(X \amalg Y) \amalg Z</math>. | |||
==General unions== | ==General unions== |
Revision as of 14:16, 4 November 2008
In mathematics, the disjoint union of two sets X and Y is a set which contains "copies" of each of X and Y: it is denoted or, less often, .
There are injection maps in1 and in2 from X and Y to the disjoint union, which are injective functions with disjoint images.
If X and Y are disjoint, then the usual union is also a disjoint union. In general, the disjoint union can be realised in a number of ways, for example as
The disjoint union has a universal property: if there is a set Z with maps and , then there is a map such that the compositions and .
The disjoint union is commutative, in the sense that there is a natural bijection between and ; it is associative again in the sense that there is a natural bijection between and .
General unions
The disjoint union of any finite number of sets may be defined inductively, as
The disjoint union of a general family of sets Xλ as λ ranges over a general index set Λ may be defined as
References
- Paul Halmos (1960). Naive set theory. Van Nostrand Reinhold, 24.
- Keith J. Devlin (1979). Fundamentals of Contemporary Set Theory. Springer-Verlag, 12. ISBN 0-387-90441-7.