Clausius-Mossotti relation: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
imported>Paul Wormer
No edit summary
Line 1: Line 1:
{{subpages}}
{{subpages}}
<!-- P. Debye, Einige Resultate einer kinetischen Theorie der Isolatoren, Physikalische
Zeitschrift 13 (1912), 97–100. Debye's extension of C-M
11. P. Debije, Zur Theorie der anomalen Dispersion im Gebiete der langwelligen elektrischen
Strahlung, Berichte der deutschen physikalischen Gesellschaft 15 (1913), 777–
793.
-->
In [[physics]], the '''Clausius-Mossotti relation''' <ref>
In [[physics]], the '''Clausius-Mossotti relation''' <ref>
Ottaviano Fabrizio Mossotti, ''Discussione analitica sull’influenza che l’azione di un mezzo dielettrico ha sulla distribuzione dell’elettricità alla superficie di più corpi elettrici disseminati in esso'', Memorie di Mathematica e di Fisica della Società Italiana della Scienza Residente in Modena, vol. '''24''', p. 49-74 (1850). </ref>
Ottaviano Fabrizio Mossotti, ''Discussione analitica sull’influenza che l’azione di un mezzo dielettrico ha sulla distribuzione dell’elettricità alla superficie di più corpi elettrici disseminati in esso'', Memorie di Mathematica e di Fisica della Società Italiana della Scienza Residente in Modena, vol. '''24''', p. 49-74 (1850). </ref>
<ref> Rudolf Clausius, ''Die mechanische Wärmetheorie'', vol. 2, pp. 62-97, Vieweg &Sohn, Braunschweig (1879). </ref> connects the [[relative permittivity]] &epsilon;<sub>r</sub> of a [[dielectric]] to the [[polarizability]] &alpha; of the atoms or  molecules constituting the dielectric. The relative permittivity is a bulk (macroscopic) property and polarizability is a microscopic property of matter.
<ref> Rudolf Clausius, ''Die mechanische Wärmetheorie'', vol. 2, pp. 62-97, Vieweg &Sohn, Braunschweig (1879). </ref> connects the [[relative permittivity]] &epsilon;<sub>r</sub> of a [[dielectric]] to the [[polarizability]] &alpha; of the atoms or  molecules constituting the dielectric. The relative permittivity is a bulk (macroscopic) property and polarizability is a microscopic property of matter; hence the relation bridges the gap between a directly-observable macroscopic property with a microscopic molecular property.  
The relation for  dielectric matter consisting of atoms or (non-polar) molecules is
 
The Clausius-Mossotti  equation for  dielectric matter consisting of atoms or (non-polar) molecules is
:<math>
:<math>
\frac{\epsilon_r -1}{\epsilon_r+2} = \frac{1}{3\epsilon_0} N \alpha,
\frac{\epsilon_r -1}{\epsilon_r+2} = \frac{1}{3\epsilon_0} N \alpha,
Line 84: Line 78:
==References==
==References==
<references />
<references />
<!--
Extension to polar molecules:
P. Debye, Einige Resultate einer kinetischen Theorie der Isolatoren, Physikalische
Zeitschrift 13 (1912), 97–100. Debye's extension of C-M
11. P. Debije, Zur Theorie der anomalen Dispersion im Gebiete der langwelligen elektrischen
Strahlung, Berichte der deutschen physikalischen Gesellschaft 15 (1913), 777–
793.
-->

Revision as of 07:51, 11 December 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In physics, the Clausius-Mossotti relation [1] [2] connects the relative permittivity εr of a dielectric to the polarizability α of the atoms or molecules constituting the dielectric. The relative permittivity is a bulk (macroscopic) property and polarizability is a microscopic property of matter; hence the relation bridges the gap between a directly-observable macroscopic property with a microscopic molecular property.

The Clausius-Mossotti equation for dielectric matter consisting of atoms or (non-polar) molecules is

where ε0 is the electric constant (permittivity of the vacuum) and N is the number density (number of atoms or molecules per volume).

The index of refraction n of a dielectric is given by

where we used that for most dielectric matter the relative magnetic permeability μr is very close to unity. Substitution of this value of n gives the Lorentz-Lorenz relation

Derivation

Consider N atoms or molecules, constituting the dielectric, in an external electric field E. The sum of this field and an internal field Eint induces a dipole pind on each molecule. The polarization vector P is the sum of the induced dipoles,

From the relation between P, the electric displacement, and the electric field follows

To get an expression for pind, we consider a single molecule in a little spherical cavity inside the dielectric. It is shown below that the total field inside this cavity is

where we introduced absolute magnitudes, which is allowed because all vectors lie along the z-axis, the direction of E. Now,

Further,

from which the Clausius-Mossotti relation follows directly.

We neglected here the contributions to the total field in the cavity from the other molecules in the cavity. It can be shown that these contributions average out in most dielectrics.

Internal electric field in dielectric

Slab of dielectric (green) in external electric field E. Microscopic spherical cavity (size greatly exaggerated in drawing) of radius r in dielectric.

A macroscopic slab of dielectric is placed in an outer electric field E (the z-direction) that polarizes the dielectric, so that a surface charge density σp is created. Since E "pushes" positive charge and "pulls" negative charge, the sign of the charge density on the outer surface is as is indicated in the figure. The polarization vector P points by definition from negative to positive charge. The surface charge density σp is in absolute value equal to |P|.

An infinitesimally small spherical cavity of radius r is made in the dielectric and inside this cavity there is vacuum with permittivity (electric constant) ε0. Because of electric neutrality the surface of the cavity has the charge density (in absolute value),

where n is a unit length vector perpendicular to the surface of the cavity at the point θ. By definition, the positive direction of the normal n is outward.

An infinitesimal element on the surface of the cavity gives a contribution to the internal electric field Eint parallel to n,

The z-component of n is cosθ and hence the contribution to the field in the z direction is

Contributions in other than the z direction cancel mutually. Integration over the whole surface gives

The total electric field in the cavity is in the z direction and has magnitude

References

  1. Ottaviano Fabrizio Mossotti, Discussione analitica sull’influenza che l’azione di un mezzo dielettrico ha sulla distribuzione dell’elettricità alla superficie di più corpi elettrici disseminati in esso, Memorie di Mathematica e di Fisica della Società Italiana della Scienza Residente in Modena, vol. 24, p. 49-74 (1850).
  2. Rudolf Clausius, Die mechanische Wärmetheorie, vol. 2, pp. 62-97, Vieweg &Sohn, Braunschweig (1879).