Clausius-Clapeyron relation: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
No edit summary
imported>Paul Wormer
Line 45: Line 45:
-S^{\mathrm{I}} \Delta T +V^{\mathrm{I}} \Delta P = -S^{\mathrm{II}} \Delta T +V^{\mathrm{II}} \Delta P
-S^{\mathrm{I}} \Delta T +V^{\mathrm{I}} \Delta P = -S^{\mathrm{II}} \Delta T +V^{\mathrm{II}} \Delta P
\;\Longrightarrow\;
\;\Longrightarrow\;
\frac{\Delta P}{\Delta T} = \frac{S^{\mathrm{II}} - S^{\mathrm{I}}}{V^{\mathrm{II}} - V^{\mathrm{I}}}.
\frac{\Delta P}{\Delta T} = \frac{S^{\mathrm{I}} - S^{\mathrm{II}}}{V^{\mathrm{I}} - V^{\mathrm{II}}}.
</math>
</math>
From the second law of thermodynamics it is known that for a reversible phase transition it holds that
From the second law of thermodynamics it is known that for a reversible phase transition it holds that
:<math>
:<math>
S^{\mathrm{II}} - S^{\mathrm{I}} = \frac{Q}{T},
S^{\mathrm{I}} - S^{\mathrm{II}} = \frac{Q}{T},
</math>
</math>
where ''Q'' is the amount of heat necessary to convert one mole of
where ''Q'' is the amount of heat necessary to convert one mole of
compound from phase I into phase II. Elimination of the entropy and taking the limit of infinitesimally small changes in ''T'' and ''P'' gives the ''Clausius-Clapeyron
compound from phase II into phase I. Elimination of the entropy and taking the limit of infinitesimally small changes in ''T'' and ''P'' gives the ''Clausius-Clapeyron
equation'',
equation'',
:<math>
:<math>
\frac{dP}{dT} = \frac{Q}{T(V^{\mathrm{II}} - V^{\mathrm{I}})} .
\frac{dP}{dT} = \frac{Q}{T(V^{\mathrm{I}} - V^{\mathrm{II}})} .
</math>
</math>
==Approximate solution==
==Approximate solution==



Revision as of 22:54, 14 September 2009

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
PD Image
The red line in the P-T diagram is the coexistence curve of two phases, I and II, of a single-component system. Phase I may be the vapor and II the liquid phase of the component. The lower green line gives the slope in phase I and the upper green line in phase II.

The Clausius–Clapeyron relation is an equation for a single-component system[1] consisting of two phases in thermodynamic equilibrium at constant absolute temperature T and constant pressure P. A curve in a two-dimensional thermodynamical diagram that separates two phases in equilibrium is known as a coexistence curve. The Clausius–Clapeyron relation gives the slope of the coexistence curve in the P-T diagram:

where Q is the molar heat of transition. It is the heat necessary to bring one mole of the compound constituting the system from phase I into phase II; it is also known as latent heat. For phase transitions with constant P, it is the molar transition enthalpy. For instance, when phase II is a liquid and phase I is a vapor, then QHv is the molar heat of vaporization (also known as molar enthalpy of evaporation). Further, V I is the molar volume of phase I at the pressure P and temperature T of the point where the slope is considered and V II is the same for phase II.

The equation is named after Émile Clapeyron, who published it in 1834, and Rudolf Clausius, who put it on firm thermodynamic basis in 1850.

Derivation

The condition of thermodynamical equilibrium at constant pressure P and constant temperature T between two phases I and II is the equality of the molar Gibbs free energies G,

The molar Gibbs free energy of phase α (α = I, II) is equal to the chemical potential μα of this phase. Hence the equilibrium condition can be written as,

which holds everywhere along the coexistence (red) curve in the figure.

If we go reversibly along the lower and upper green line in the figure [the tangents to the curve in the point (T,P)], the chemical potentials of the phases, being functions of T and P, change by ΔμI and ΔμII, for phase I and II, respectively, while the system stays in equilibrium,

From classical thermodynamics it is known that

Here Sα is the molar entropy (entropy per mole) of phase α and Vα is the molar volume (volume of one mole) of this phase. It follows that

From the second law of thermodynamics it is known that for a reversible phase transition it holds that

where Q is the amount of heat necessary to convert one mole of compound from phase II into phase I. Elimination of the entropy and taking the limit of infinitesimally small changes in T and P gives the Clausius-Clapeyron equation,

Approximate solution

The Clausius-Clapeyron equation is exact. When we make the following assumptions we may perform the integration:

  • The molar volume of phase I is negligible compared to the molar volume of phase II: VII >> VI. In general, far from the critical point, this inequality holds well for liquid-gas equilibria.
If phase II is a gas and the pressure is fairly low, this assumption is reasonable.
  • The transition (latent) heat Q is constant over the temperature integration interval. The integrations run from the lower temperature T1 to the upper temperature T2 and from P1 to P2.

Under these condition the Clausius-Clapeyron equation becomes

Integration gives

where ln(P2/P1) is the natural (base e) logarithm of P2/P1. We reiterate that for a gas-liquid equilibrium Q = Hv, the heat of vaporization.

Reference

  1. See J.C.M. Li, Clapeyron Equation for Multicomponent Systems, Journal of Chemical Physics, vol. 25, pp. 572–574 (1956) for a generalization to systems of more than one component.