Pauli spin matrices
Jump to navigation
Jump to search
The Pauli spin matrices are a set of unitary Hermitian matrices which form an orthogonal basis (along with the identity matrix) for the real Hilbert space of 2 × 2 Hermitian matrices and for the complex Hilbert spaces of all 2 × 2 matrices. They are usually denoted:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_x=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y=\begin{pmatrix} 0 & -\mathit{i} \\ \mathit{i} & 0 \end{pmatrix}, \quad \sigma_z=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}
Algebraic properties
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_x^2=\sigma_y^2=\sigma_z^2=I}
For i = 1, 2, 3:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{det}(\sigma_i)=-1\,}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{Tr}(\sigma_i)=0\,}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mbox{eigenvalues}=\pm 1\,}
Commutation relations
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_1\sigma_2 = i\sigma_3\,\!}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_3\sigma_1 = i\sigma_2\,\!}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_2\sigma_3 = i\sigma_1\,\!}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i\sigma_j = -\sigma_j\sigma_i\mbox{ for }i\ne j\,\!}
The Pauli matrices obey the following commutation and anticommutation relations:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{matrix} [\sigma_i, \sigma_j] &=& 2 i\,\varepsilon_{i j k}\,\sigma_k \\[1ex] \{\sigma_i, \sigma_j\} &=& 2 \delta_{i j} \cdot I \end{matrix}}
- where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_{ijk}} is the Levi-Civita symbol, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta_{ij}} is the Kronecker delta, and I is the identity matrix.
The above two relations can be summarized as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i \sigma_j = \delta_{ij} \cdot I + i \varepsilon_{ijk} \sigma_k. \,}