Palynology

From Citizendium
Revision as of 18:12, 3 August 2007 by imported>Thomas Simmons
Jump to navigation Jump to search

Palynology is the science of the study of contemporary and fossil palynomorphs as well as associated particulate organic matter (POM) in sedimentary strata. Palynomorphs are microscopic (from about 5 µm to about 500 µm), decay-resistant remains of certain plants and animals.[1] Micro-fossils classed as palynomorphs include acritarchs, chitinozoans, dinoflagellate cysts (dinoflagellates are marine organisms, comprising the red algae which make up the "red tides" in modern oceans), pollen, spores and scolecodonts. Palynomorphs posses an organic outer wall which then render distinctive fossils.

Characteristics

Not all microspores are palynomorphs. Polynomorphs can be successfully extracted from sedimentary deposits using routine pollen-extraction procedures including strong acids, bases, acetolysis, and density separation techniques that would destroy other types of microfossils. Nonpolynomorph microfossils have siliceous, calcareous, phosphatic, or cellulose walls, that are not decay resistant and do not withstand routine pollen extraction methods. Most microfossils are marine or freshwater organisms, or parts thereof. One type of microfossil, Opaline phytolith, is neither palynomorphic nor aquatic microfossil in that it is the siliceous remains of cells of specific plants. Another type of microfossil, foraminifera, is both polynomorph and non-polynomorph microfossil because it has a non-resistant calcareous tests (segments of the skeleton of the dead plant) and resistant chitinous linings.[2]

Pollen and spores can be dispersed by wind and water and may be deposited over a very wide range. Since pollen and spores are transported over extensive distances before deposition, they are not consistently good sources of information for the environment in which they were deposited having originated elsewhere. They can however be used for the study of ancient climates (e.g. they may be used to study glacial and interglacial periods) and biostratigraphy. Organic chemicals become darker in hotter environments. This characteristic can be used to assess the temperature of the strata during the deposition of the palynomorphs. The color of fossils is useful in determining the possible presence of petroleum or gas since heat from burial in the Earth is a critical component of the process of forming oil and gas from organic deposits.[3][4][5]

Palynology is an interdisciplinary field overlapping with geological and biological sciences.

References

  1. resistance due to their composition of material such as sporopollenin, chitin, or related compounds
  2. [1] University of Arizona
  3. Palynology at the University of Arizona
  4. Using Microfossils in petroleum exploration Brian J. O’Neill. University of California Museum of Paleontology
  5. Biostratigraphy Els Gervais and Hubert Jansen, J & G Consultants

Interdisciplinary Links in Citizendium

Resources