Riemann zeta function

From Citizendium
Revision as of 17:53, 27 March 2008 by imported>Barry R. Smith (Increased domain of series validity to complex nos. with imaginary part > 1.)
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, the Riemann zeta function, named after Bernhard Riemann, is a meromorphic function defined for complex numbers with imaginary part by the infinite series

and then extended to all other complex values of s except s = 1 by analytic continuation. The function is holomorophic everywhere except for a simple pole at s = 1.

Euler's product formula for the zeta function is

(the index p running through the whole set of positive prime numbers.

The celebrated Riemann hypothesis is the conjecture that all non-real values of s for which ζ(s) = 0 have real part 1/2. The problem of proving the Riemann hypothesis is the most well-known unsolved problem in mathematics.