Subspace topology
Jump to navigation
Jump to search
In general topology, the subspace topology, or induced or relative topology, is the assignment of open sets to a subset of a topological space.
Let (X,T) be a topological space with T the family of open sets, and let A be a subset of X. The subspace topology on A is the family
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{T}_A = \{ A \cap U : U \in \mathcal{T} \} .\,}
The subspace topology makes the inclusion map A → X continuous and is the coarsest topology with that property.
References
- Wolfgang Franz (1967). General Topology. Harrap, 36.
- J.L. Kelley (1955). General topology. van Nostrand, 50-53.