Abel function is a special kind of solution of the Abel equations, used to classify them as superfunctions, and formulate conditions of uniqueness.
The Abel equation is class of equations which can be written in the form
![{\displaystyle g(f(z))=g(z)+1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f43bc5b0a7975b80684a4c9f24b1f7f73c243a13)
where function
is supposed to be given, and function
is expected to be found.
This equation is closely related to the iterational equation
![{\displaystyle H(F(z))=F(z+1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0725b965f3a88018f644a5cc5421dbcfe9c4e087)
![{\displaystyle f(u)=v}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2cee70188e1304778137e7f396d7a1addfe8d1d5)
which is also called "Abel equation".
In general the Abel equation may have many solutions, and the additional requirements are necessary to select the only one among them.
superfunctions and Abel functions
Definition 1: Superfunction
If
, ![{\displaystyle D\subseteq \mathbb {C} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/819134317effd77a876457d774c8a9ba75d58ea1)
is holomorphic function on
,
is holomorphic function on ![{\displaystyle D}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6)
![{\displaystyle F(D)\subseteq C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/26a89c254d7721bc83ae74e641263b9670450cb6)
![{\displaystyle f(u)=v}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2cee70188e1304778137e7f396d7a1addfe8d1d5)
![{\displaystyle F(z+1)=F(f(z))~\forall z\in D:z\!+\!1\in D}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fb1bedcd460ce70580880fe0dad3235cb373f4a0)
Then and only then
is
superfunction of
on
Definition 2: Abel function
If
is
superfunction on
on ![{\displaystyle D}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6)
, ![{\displaystyle D\subseteq \mathbb {C} ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/80de77fb180cb5ae9c43c24d6aed24715cf73ea9)
is holomorphic on ![{\displaystyle H}](https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b)
![{\displaystyle g(H)\subseteq D}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e24fa2ce261d5df186f4d6528f62283cc9fd1d73)
![{\displaystyle f(g(z))=z\forall z\in H}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c10f63adc7a7674e83030600a82256ec2d5c2692)
![{\displaystyle g(u)=v,~u\in G}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9cbfa86a54c37597ccb5dc1508b29af6e751d726)
Then and only then
id
Abel function in
with respect to
on
.
Examples
Properties of Abel functions
Attribution
- Some content on this page may previously have appeared on Wikipedia.
References