Algebraic number

From Citizendium
Revision as of 09:40, 8 May 2008 by imported>Barry R. Smith (integer coefficients in definition of algebraic integer)
Jump to navigation Jump to search
This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Advanced [?]
 
This editable, developed Main Article is subject to a disclaimer.

In mathematics, and more specifically—in number theory, an algebraic number is any complex number that is a root of a polynomial with rational coefficients. Any polynomial with rational coefficients can be converted to one with integer coefficients by multiplying through by the least common multiple of the denominators, and every complex root of a polynomial with integer coefficients is an algebraic number. If an algebraic number x can be written as the root of a polynomial with integer coefficients which is also monic, that is, one whose leading coefficient is 1, then x is called an algebraic integer.

The algebraic numbers include all rational numbers, and both sets of numbers, rational and algebraic, are countable. The algebraic numbers form a field; in fact, they are the smallest algebraically closed field with characteristic 0. [1]

Real or complex numbers that are not algebraic are called transcendental numbers.

Degree

Let   be an algebraic number different from   The degree of   is, by definition, the lowest degree of a polynomial   with rational coefficients, for which

Examples

Rational numbers different from   are algebraic and of degree   All non-rational algebraic numbers have degree greater than

is an algebraic number of degree 2, and, in fact, an algebraic integer, as it is a root of the polynomial . Similarly, the imaginary unit is an algebraic integer of degree 2, being a root of the polynomial .

Algebraic numbers via subfields

The field of complex numbers   is a linear space over the field of rational numbers   In this section, by a linear space we will mean a linear subspace of   over   and by algebra we mean a linear space which is closed under the multiplication, and which has   as its element. The following properties of a complex number   are equivalent:

  •   is an algebraic number of degree
  •   belongs to an algebra of linear dimension

Indeed, when the first condition holds, then the powers   linearly generate the algebra required by the second condition. And if the second condition holds then the   elements   are linearly dependent (over rationals).

Actually, every finite dimensional algebra   is a field—indeed, divide an equality

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0\cdot z^n + \dots+ a_{n-1}\cdot z + a_n\ =\ 0}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a_0\ne 0\ne a_n,}   by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a_n\cdot z,}   and you quickly get an equality of the form:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{-1}\ =\ b_0\cdot z^{n-1}+\cdots + b_{n-1}}

A momentary reflection gives now

Theorem The degree of the inverse Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ z^{-1}}   of any algebraic number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ z\ne 0}   is equal to the degree of the number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ z}   itself.

The sum and product of two algebraic numbers

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 1 \in A\subseteq \mathcal A}   and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 1 \in B\subseteq \mathcal B,}   where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A,B,}   are finite linear bases of fields Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathcal A,\mathcal B,}   respectively. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathcal D}   be the smallest algebra generated by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathcal A\cup \mathcal B.}   Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathcal D}   is linearly generated by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{a\cdot b :\ a\in A\ \and\ b\in B\}}

Thus the linear dimensions (over rationals) of the three algebras satisfy inequality:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim(\mathcal D)\ \le\ \dim(\mathcal A)\cdot \dim(\mathcal B)}

Now, let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a,b,}   be arbitrary algebraic numbers of degrees Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ m,n,}   respectively. They belong to their respective m- and n-dimensional algebras. The sum and product Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a+b, a\cdot b,}   belong to the algebra generated by the union of the two mentioned algebras. The dimension of the generated algebra is not greater than Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ m\cdot n.} It contains Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a+b, a\cdot b,}   as well as all linear combinations Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \alpha\cdot a + \beta\cdot b,}   with rational coefficients Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \alpha,\beta.}   This proves:

Theorem  The sum and the product of two algebraic numbers of degree m and n, respectively, are algebraic numbers of degree not greater than mn. The same holds for the linear combinations with rational coefficients of two algebraic numbers.

As a corollary to the above theorem, together with the previous section, we obtain:

Theorem  The algebraic numbers form a field.

Notes

  1. If 1 + 1 = 0 in the field, the characteristic is said to be 2; if 1 + 1 + 1 = 0 the characteristic is said to be 3, and forth. If there is no Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} such that adding 1 times gives 0, we say the characteristic is 0. A field of positive characteristic need not be finite.