Magnetic induction

From Citizendium
Revision as of 06:48, 21 May 2008 by imported>Paul Wormer (New page: {{subpages}} In physics, and more in particular in the theory of electromagnetism, '''magnetic induction''' (commonly denoted by '''B''') is a vector field closely related to the [...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In physics, and more in particular in the theory of electromagnetism, magnetic induction (commonly denoted by B) is a vector field closely related to the magnetic field H.

In vacuum, that is, in the absence of a ponderable, continuous, and magnetizable medium, the fields B and H are related as follows,

where μ0 is the magnetic constant (equal to 4π⋅10−7 N/A2).

In a continuous magnetizable medium the relation between B and H contains the magnetization M of the medium,

which expresses the fact that B is modified by the induction of a magnetic moment (non-zero magnetization) in the medium.

In almost all media, the magnetization M is linear in H,

For a magnetically isotropic medium the magnetic susceptibility tensor χ is a constant times the identity 3×3 matrix, χ = χm 1. For an isotropic medium we obtain for SI and Gaussian units, respectively, the relation between B and H,

The material constant μ, which expresses the "ease" of magnetization of the medium, is called the magnetic permeability of the medium.