Removable singularity

From Citizendium
Revision as of 16:24, 9 November 2008 by imported>Richard Pinch (new entry, just a placeholder really)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In complex analysis, a removable singularity is a type of singularity of a function of a complex variable which may be removed by redefining the function value at that point.

A function f has a removable singularity at a point a if if there is a neighbourhood of a in which f is holomorphic except at a and the limit exists. In this case, defining the value of f at a to be equal to this limit (which makes f continuous at a) gives a function holomorphic in the whole neighbourhood.

An isolated singularity may be either removable, a pole, or an essential singularity.