Magnaporthe grisea

From Citizendium
Revision as of 14:28, 16 April 2009 by imported>Shridevi singh (→‎Genome structure)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
All unapproved Citizendium articles may contain errors of fact, bias, grammar etc. A version of an article is unapproved unless it is marked as citable with a dedicated green template at the top of the page, as in this version of the 'Biology' article. Citable articles are intended to be of reasonably high quality. The participants in the Citizendium project make no representations about the reliability of Citizendium articles or, generally, their suitability for any purpose.

Attention niels epting.png
Attention niels epting.png
This article is currently being developed as part of an Eduzendium student project in the framework of a course entitled Microbiology 201 at Queens College, CUNY. The course homepage can be found at CZ:Biol 201: General Microbiology.
For the course duration, the article is closed to outside editing. Of course you can always leave comments on the discussion page. The anticipated date of course completion is May 21, 2009. One month after that date at the latest, this notice shall be removed.
Besides, many other Citizendium articles welcome your collaboration!


Magnaporthe grisea

A conidium and conidiogenous cell of M. grisea

Magnaporthe grisea.jpg
Scientific classification
Kingdom: fungi
Phylum: Ascomycota
Class: Sordariomycetes
Order: Incertae sedis
Family: Magnaporthaceae
Genus: Magnaporthe
Species: M.grisea
Binomial name
Magnaporthe grisea


Description and significance

Magnaporthe grisea, a plant-pathogenic fungus, is the causal agent of rice blast disease which is one of the greatest pathological threats to rice crops. It was thought to be localized only in developing nations, however for the past decade it has emerged as a severe problem in the United States, more recently in California. Yearly, rice that can feed an estimated 60 million people is destroyed by this disease. M.grisea is a well adapted fungus that can attack and penetrate its host plant with ease. More importantly, this fungus can also infect other important agricultures such as cereals, wheat, rye, pearl millet, and barley. The disease that is cause is then referred as blight disease or blast disease. Furthermore, M.grisea is thought of as a model organism in studies of fungal phytopathogenicity and host-parasite interactions.

A typical eye-shaped lesion of rice blast disease on a U.S. rice cultivar that was inoculated with M.grisea.

Genome structure

Due to the destructive nature of this pathogen, sequencing the entire genome was necessary to understand the mechanisms of how the fungus causes disease. The complete genome of M.grisea was sequenced in 2005. M. grisea is a haploid and consists of ~40 Mb that are contained in 7 chromosomes (Talbot et al. 1993; Orbach 1996).The genome consists of a varied group of secreted proteins and a range of GPCR (G-Protein Coupled Receptors) genes. Furthermore, strong phylogenetic evidence of HGT’s (Horizontal Gene Transfer) has been found between M.grisea (ascomycete fungi) and oomycetes ( a distant relative).

Cell structure and metabolism

Ecology

Pathology

Application to Biotechnology

Current Research

References